
3D Games Without Programming

Making 3D Games with Reality Factory

by Dan Valeo

Published by:
Bookshock Publications
Toronto Ontario

Copyright © 2003, Bookshock Publications

ISBN 0-9687185-4-X

All rights reserved. The purchaser of this electronic publication may store one copy in
electronic format and one printed copy. Any more copies of this book stored in any means, is a
violation of the purchaser agreement and international copyright laws. No copies of this book
may be distributed in any format. This title is not freeware or shareware. This publication is not
for resale. The author and the publisher does not resume any responsibility for use or misuse of
any information provided within this book.

1

Introduction to Reality Factory

Level Planning

Game Planning

Using the World Editor

Building a Level - Space Escape

Lighting the Level

Adding Models and Doors

Creating Actor Files

Bringing Actors into RF

Adding First Person Weapons

Creating Enemy Pawns

Introduction to Pawn Scripting

Writing Pawn Scripts

Space Escape - Stage 5

Heads Up Display

Adding a Puzzle

The RF Menu

Space Escape - Finishing Touches

Packaging a Demo

Advanced Level Design

• 3

• 13

• 21

• 27

• 35

• 53

• 59

• 73

• 81

• 89

• 99

• 107

• 117

• 153

• 163

• 171

• 177

• 189

• 195

• 203

3D Games with Reality Factory

2

Introduction to Reality Factory

3

Game design in one form or another, is a hobby

shared by millions of people world wide. Some people even

have the benefit of creating games as a career. Whatever

the purpose though, these people all use a set of selected

tools to help them accomplish this. In many instances, one of

these tools is referred to as a Game Engine. This is the core

of the game and its function is to establish a system, that can

create a game from a simpler level of programming and utilize

specific media for the game. Reality Factory is a generic

game engine, that is easily configured with little or no

programming at all.

Reality Factory was devise by two individuals named

Ed Averil and Terry Morgan. Ed Averil has since then moved

on to other things and the engine is now currently managed

by Terry Morgan, Ralph Deane and Mike Wuetherick. Their

efforts have allowed Reality Factory to develop into a very

sophisticated game engine, that is freely available to almost

anyone world wide. The original purpose of Reality Factory,

was to give non-programmers the ability to very quickly create

a game demo, that can be presented to game publishers. It

serves this purpose very well. Since its first release though,

RF has become a very powerful engine, that is capable of

creating a complete game that can be published entirely on

its own.

3D Games with Reality Factory

4

The Reality Factory game engine is capable of

creating 3D role playing and action / adventure games. It can

create games that run in First Person mode, similar to the

Quake and Doom style of game play. It can create third

person views where the player stands behind the character,

isometric views similar to those found in many sim games and

a fixed camera system similar to the original Resident Evil

view style. Recently, another addition has allowed for the

creation of 2D style racing games. RF becomes more and

more versatile with every update.

Reality Factory and Genesis 3D

Reality Factory is an open-source game engine. The

term open-source is given to the license agreement that RF

abides by. It stems from the agreement imposed by the

Genesis 3D game engine, from which RF is built upon. The

license agreement for Genesis states that the engine can be

used freely as long as the Genesis logo is displayed at the

start of a game and that any changes to the source code be

made public. Because the source code is open to the public,

the license is referred to, as an open-source license. To

remove the Genesis 3D logo, a license fee must be paid to

the current owners of the Genesis3D engine.

Reality Factory has added much to the original

Genesis 3D engine including the ability to use larger sized

textures and a faster 3D rendering engine. This was

contributed to the engine by Wendel Buckner. Thanks to the

dedicated contributions of Ralph Deane and a few others, the

RF game engine now surpasses the original Genesis 3D

engine in many ways.

Introduction to Reality Factory

5

How RF Works

Reality Factory can be best looked at, as a ready to

run game, that can be completely configured by the user. If

RF is executed right after it is installed, it will run the demo

game that it is configured to run by default. The demos

usually change with each major release of the engine. As of

this writing, the current release is RF07. The Reality Factory

game engine is a stand alone executable, which means that it

can be run from any writable folder it is in. It needs no

installation or system registry entries. A person can have as

many copies of RF on their system as they like, each

developing into a different game.

The Reality Factory engine itself can be broken down

into four main components. These are:

• The engine itself - RealityFactory.exe

• The configuration files, located in the INSTALL folder.

• The media files, stored in the MEDIA folder.

• The level that is loaded by the engine.

These components combine themselves to create a

game. They are tightly integrated and changes to one will

usually effect the others. By making specific alterations to

these components, the user can modify the default demo

game and make it a completely new game. To distribute the

game, all that needs to be done is to redistribute the folder

which contains the modified components. On the following

page is a diagram that details the integration between the

basic components of the engine. This diagram covers only the

first few layers of integration. As each specific component is

Reality Factory Web Sites

www.realityfactory.ca
This is the main RF

site. It has the official

release as well as demos,

some tutorials and access to

the main RF forum. It should

be the first stop for anyone

who is interested in using

RF.

www.rfactory.org
This site is managed

by Ralph Deane and is used

as a place to quickly find the

newest updates before they

become an official release.

RFDN

rfdn.realityfactory.ca
The Reality Factory

Developers Network, is a

site for professional

developers, offering a

variety of media libraries,

advanced tutorials and

various articles regarding

advanced techniques suited

for RF. It is a members only

site but is very affordable

and well worth a member-

ship. The RFDN is a vast

collection of RF resources,

that makes for an

indispensable site to game

developers.

3D Games with Reality Factory

6

examined throughout this book, they will be detailed more

closely. With Reality Factory, any changes to one of the

components in the diagram above, can have an effect on

another component that it is directly connected to. For

example. If the Player Actor is replaced with another actor,

then this will require that changes be made to the

PlayerSetup.ini configuration file. This file determines the

animations within the model used as the player. This works

both ways.

Installing Reality Factory

The RF07 installation file is named RF070.exe. It is as

easy as double clicking it and letting it install to the default

directory named realityfactory070. Download the RF07C

update and just unzip it to the realityfactory070 directory. It

will overwrite the necessary files which need updating. Before

Basic Structure of an RF Game

Introduction to Reality Factory

7

running RF for the first time, open up the Reality Factory

folder and examine the directory structure. This is the default

system which RF uses to locate the necessary media and

configuration files. It is not set in stone and can be defined

within the main RealityFactory.ini file. Here is the definition

from the main ini file:

• LevelDirectory=media\levels

• BitmapDirectory=media\bitmaps

• ActorDirectory=media\actors

• AudioDirectory=media\audio

• AudioStreamDirectory=media\audio

• VideoDirectory=media\video

• MIDIDirectory=media\midi

These definitions determine the directories where

Reality Factory will locate the configuration and media

resources. The folders which can not be defined, are those

under the media folder that are not listed above and the

Scripts folder. These are set and can not be changed.

In order to create a new game, the files within these

folders are modified or replaced. The tools that are required

to do so, also come with Reality Factory. They are stored

within the Tools folder. As each tool is required, it will be

examined in more detail. Below is a short overview of each.

The Reality Factory Tools

The utilities that come with RF can be broken down

into two sections, the World Editors and the Tools. World

Editor 2 is examined in a later chapter. For now a brief look at

3D Games with Reality Factory

8

the five most frequently used Tools will suffice.

• RF INI Editor - The INI Editor is a graphical interface to

the options defined in the RealityFactory.ini file. Through

this, the user can define the game level, the player actor

and the menu configuration file. It also allows for the

selection of options that will be useful during the level

debugging process.

• Actor Studio - Models which are to be used in Reality

Factory are referred to as Actors. RF requires that they be

in the .ACT file format. The Actor Studio can build act files

from other formats. A later chapter is dedicated to the

creation of actor files for RF.

• Actor Viewer - This is a simple interface to the Genesis

engine which allows the user to view act files and their

animations. A newer release named Actor Viewer++, is

capable of creating animations by blending two other

animations. The newer version is not a part of the official

RF package, but can be downloaded on-line.

• Font Maker - The Font Maker tool will generate fonts that

can be used in RF, from the True Type fonts that are

installed in the computers OS. The resulting bitmaps can

then be altered in a third party graphics program, to add

effects to the text such as an embossed look or a pattern

overlay.

• TXL File Editor - Reality Factory levels use a unique

texture format with the extension .TXL. These are similar

to the WAD files which were made popular with Doom.

TXL files are not distributed with the final game and are

only used by the World Editors, to compile the BSP file

which makes up the level. To create a TXL file for use with

Reality Factory, all that is required is to drag and drop the

Introduction to Reality Factory

9

texture images into the TXL file editor window. The TXL

file is then saved in the media\levels folder.

Running Video Setup

Before running Reality Factory, it is important to run

the Video Setup Program that it comes with, in order to set

the video driver and the resolution. The 32 bit D3D driver may

not work on all computer systems. The 16bit normal driver,

can be used with most systems. The Video Setup program

will determine if it can run, before it is set. By default the

resolution is set to a fullscreen 800 x 600. It is important that

when a new game is designed for Reality Factory, its final

resolution be determined before hand. This is because many

of the components must be designed with the final resolution

in mind. When the final game is distributed, it is important to

also include the Video Setup, so as to allow players to select

between 16 bit or 32 bit drivers.

Running Reality Factory

Once RF has been installed, the default demo level

can be tested out. First the player will be presented with an

interactive menu. Check a few areas of the menu. A fade

effect will appear as the screens change. This is controlled in

the menu.ini file. The entry defined as; fadetime=750,

determines the duration of this effect. In this case it is made

to last for 750 miliseconds.

There are many features and control options that are

available with Reality Factory. Before starting the demo, be

sure to check the Options category in the menu and then see

Dealing with RF Updates

Updates to Reality
Factory are constant and
very frequent. It is important
to keep up to date with the
fixes and technological
enhancements that are
constantly being applied to
RF. Updates come in ZIP
format and to use them, just
unzip the file into the RF root
directory. If prompted to
overwrite an existing file,
then select yes. The
ChangeLog file will list the
changes made to an official
update. As of this writing the
latest update is RF07B.ZIP.

3D Games with Reality Factory

10

the section named Controls. This will display a scroll window

with the keys available in Reality Factory. These controls are

configured with this menu. Any changes to the default setup,

is stored in a keyboard.ini file. This file is not stored in the

install directory but is instead located in the root directory.

By default, the audio levels are raised to half level and

may need adjusting to suit the particular likings of the player.

RF has options for both the sfx and the music volume. The

Audio menu is found through the Options menu.

RF also has a Difficulty Menu and a Character

Selection menu. These are displayed after the Start button

has been selected. By default however, the options to display

these are not checked, so the demo will not display them.

These options can be set through the RF INI Editor.

Once the game has been started, a loading screen will

be displayed and then the level will play once it has been

loaded. The level should start in first person view and a HUD

displaying the weapons ammo, should be overlayed on the

screen. To play the demo, pick up the ammo packs and

switch to a weapon that fires. The default weapon is a melee

weapon. Weapons are selected with the 0-9 keys. Fire upon

the flying monster and be careful to dodge the flames it fires

back. Once the monster has been defeated, the player enters

the teleporter to the next room. To quit a level, hit the ESC

key. This will return the game to the starting menu.

The RF Documentation

Before beginning any game development with RF, it is

Introduction to Reality Factory

11

imperative that the documentation that comes with the main

RF installation, is read over thoroughly. The ‘docs’ explains

the use of the entities, the pawn scripting commands,

methods of creating weapons and effects and much, much

more. The side bars found throughout the book, will

constantly be referring to the off-line documentation. During

any development with RF, the docs should be open and

ready for quick access. They should be used as a reference

for every modification made to the config files and when

adding an entity to a level.

RF also comes with a file that documents the changes

made to the engine with each release. This file is named

changelog.doc and is found in the RF root directory. Before

adding an update, this file can be examined within the zip of

the update, to see what changes have been made before any

overwrites take place.

Trouble Shooting RF

If RF ever fails to start or crashes once it has started,

an error will be logged to a file in the root directory named,

RealityFactory.log. If there are no errors during operation,

then an examination of the RealityFactory.log file will read

something along the lines of:

File open attempt failed on type '9', file '.\keyboard.ini'

File open attempt failed on type '9', file '.\savedgames.rgf'

Game started

Game exiting

The first line states that the keyboard.ini file could not

3D Games with Reality Factory

12

be found. This is normal since the keys are not re-configured.

The second line states that the savegame file could not be

found. This is also normal since no games have been saved.

So the game starts and logs this event. No errors were

reported during game play and the final line states that RF

has shut down cleanly and successfully. If an error occurs

during runtime, then the error log might be read as follows:

File open attempt failed on type '9', file '.\keyboard.ini'

File open attempt failed on type '6', file

'media\bitmaps\menu\credit.bmp'

Missing Bitmap menu\credit.bmp or Missing Path

In this instance, the log file states that a file named

credit.bmp, could not be found in the specified directory,

media\bitmaps\menu. This type of error is the most common a

person will run into. Be sure to check the RealityFactory.log

file when ever an error occurs. If nothing has been logged to

the file, then a critical system error has occurred and must be

corrected another way.

Level Planning

13

Game developers want to put as much imagination

into their creations as they can. But a designer must conform

with the limitations of the engine that they are using. By

considering these during the design process, a developer will

be able to plan the level to compensate for these limitations.

This chapter will discuss what RF is capable of and how the

design process should consider this.

The Environment

The first consideration for a designer is if the engine

can support the environment outlined for the game. RF can

handle large indoor levels very efficiently. A level that keeps

the player going from ‘room to room’, is easily handled by the

engine, because such a small area of the level is rendered at

any point during the game. (One room at a time.) Indoor

levels can obtain the appearance that they are within a large

outdoor environment, by creating windows and ceilings that

display a SkyBox. More about this in a later chapter.

RF also allows for the creation of large outdoor levels,

due to a feature which allows for a set clipping distance.

When combined with a Fog effect, the two components

interact to create a system that prevents the engine from

wasting time rendering objects in the distance, while giving

3D Games with Reality Factory

14

the effect that they are slowly coming into view. The chapter

on advanced level building discusses methods for creating

large outdoor levels.

For an indoor level, it is important to consider the

following factor. The default scale for the RF Ernie player

actor requires a minimum world height of 128 texels and will

be able to crouch and jump over, objects that are 64 texels

from the ground. The scale of the player actor will ultimately

determine the size of all other objects used for the level.

Important design sizes include the dimensions of doors and

stair case openings.

For outdoor levels, it is important to consider the

maximum viewing distance of the player. This is controlled by

the Fogging and Clip Plane features and determines the

amount of brushes that will be rendered by the engine at any

one time. The shorter the viewing distance, the more efficient

the rendering of the level will be.

The Player Actor

Almost everything in the level will revolve around the

player actor in one way or another. Obviously, this is because

the player actor is the interface between the game player and

the level. One will have to consider many things but the most

important is the final view of the game. Will it be a first person

shooter, a third person view, an isometric view or a fixed

camera system. The simplest to develop is a first person

shooter, since it requires the least modification to the main

playersetup.ini file and the least animations. The game

outlined throughout this book is a first person shooter. There

Level Planning

15

are many other considerations with the player actor including:

• Actor Size - The player must fit in the level. The ultimate

scaling of the player and the other actors in the game, will

determine how seemingly large the level is.

• Actor Bone Names - These will be referred to in many

instances and should be written down for quick reference.

• Actor Animations - A first person shooter requires no

more then six animations applied to the actor, while a third

person view will require more then sixteen animations

minimum. First person shooters also only reveal the

weapon in view, making them very easy to model for.

The Texture Library

All textures used in RF must be a power of 2. This

means that the dimensions of the texture must be a number

that can divide itself down to 2. For example, 2, 4, 8, 16, 32,

64, 128, 256 and 512 are all valid dimensions. The images do

not have to be square. 128 x 64 is a valid texture size. Since

textures must abide by this rule, it is logical to build the level

with brushes that also use the power of two rule. For instance,

if a house was going to be modeled from a 128 x 128 x 256

sized brush, then a texture that is 128 x 128 can be applied

perfectly. The image in the side bar is of a door face in the

game Sons of Mars. The brush has a bottom width of 128, a

top width of 64 and a height of 128. In the corner of the image

is the texture that is applied to the face. It was made to match

the dimensions of the door brush.

The actual look of the textures is very important as

well. They will have the greatest effect on the mood of the

This image is of a

door face in the game Sons

of Mars. The brush has a

bottom width of 128, a top

width of 64 and a height of

128. In the corner of the

image is the texture that is

applied to the face. It was

made to match the

dimensions of the door

brush.

3D Games with Reality Factory

16

level. It’s the paint on the walls, so to speak. In order to keep

things consistent from level to level, each should be built

using the same set of Base Textures. A base texture, is an

image that is repeatedly used throughout the level. Any

structural brushes such as walls, ceilings and floors all use

base textures. As more detail is required, these base textures

are modified to create new textures that are meant for specific

positions within the level. For example, a door texture is made

from the wall base texture or a room with a burnt wall, should

also have its textures made from the wall base texture.

The base textures are so important that they should

be made prior to any level construction or made as needed

during the construction of the level. The best method is to

plan and create the base textures and then to go and design

the basic structure of the level. As detail is added to the level,

the base textures can be modified and added to the library as

needed.

Professional game design teams leave base textures

to the texture artists. They develop all of the internal game

play using only a single, brightly colored texture that offers

good contrast against the play elements. However, as a small

indie design team, it is better to use base textures as the level

is built. It will help to convey the design atmosphere to the

texture artist, which can help to reduce the necessary concept

art. It also allows for a game play demo to be quickly released

for testing by an indie game community. The texturing

process can take much longer then the actual level building

process and being able to release a demo for testing before

the final textures are added, is an excellent means of finding

viable feedback to the game play features.

Level Planning

17

When selecting the base textures, be sure that they

convey the right mood and theme of the level. Use textures

that tile well and do not have too much detail. RF can use 8

bit and 24 bit bitmaps or 24 and 32 bit TGA files with a

transparency alpha channel. The texture library can consist of

any combination of these, but by far the best choice is to use

32 bit TGA files or 24 bit bitmaps.

Required Game Features

The number one question designers should ask

themselves is, can RF do what the level is designed to do? In

many instances the answer is no, but this is only due to the

grand imagination of designers. The key is to design the level,

so as to work with what RF can do. For instance, at this point

in time, RF has no support for the 3D driving genre. However

it does allow for the capability to create a 2D driving scenario.

An example of this is the game Speed City. It was designed in

this fashion, to compensate for the lack of 3D vehicle support.

However, the original game idea was never changed.

Whether it ended up being 2D or 3D, the actual outlined

game play was kept the same.

The designers must ascertain the special features or

game events that will be encountered throughout the game

and then ask themselves if RF can handle it. If RF does not

directly support the required feature, then a work around will

have to be considered or the feature will have to be added by

modifying the code. In order to create Speed City, the code

was modified to disable the mouse rotation controls. This has

since then, been added to RF by the developers. It is very

important to consider this before any real game development

What to Read

Be sure to read the

following articles from the

RF manual.

• RealityFactory Overview

• 24 Bit Textures

• Bitmaps with Alpha Mask

• Bitmapped Fonts

• Video Setup

3D Games with Reality Factory

18

starts. Many developers find themselves dropping a project,

because they find that the engine could not handle their

design criteria. Things to be considered are the actions of the

player, the puzzles, the actions of the enemies and the

required graphic effects. Before any actual construction

begins, the designer must have a clear outline of how they

are going to implement the main features into the game.

Designing a Level

After all of the above mentioned considerations have

been carefully looked at, the level design process can begin.

A level starts on graph paper. Graph paper is a game

designers best friend. The units on a page of graph paper,

are used to represent units in the game level. For example,

one square on graph paper can represent a 128 x 128 texel

area in the game world. It takes a small amount of time to

design the level on graph paper and that will translate into a

much more efficient construction process.

Start by considering the total size of the level and how

many texels long and wide it will be. Have a defined starting

point and the points that end the level. Draw each large room

or structural wall on the graph paper. Remember to use the

specified units of the graph paper, as a guide to the size of

the brushes that will be used to build the level. Try to add as

much level concept as possible. Mark where the puzzles will

be, where enemies should be positioned and the paths that

enemies will traverse. Mark off doors and try to find areas in

the level that can be sectioned off with them. More about this

in a later chapter.

Level Planning

19

With the level laid out on paper, the designer can now

define the necessary dimensions and scale. By using the

default actor scale, the base unit for the level should be a 128

x 128 texel area. If it ends up that the level may be too large

for the engine to handle efficiently, then the level and all of its

components will have to be scaled down. In order to double

the efficiency, a level first planned to be 4096 x 4096, can be

scaled by 0.5 to have dimensions of 2048 x 2048. The actor,

all textures and the enemies will all have to be scaled by 0.5

as well. This will require modification to components within the

level and the RF configuration files.

After a level or levels have been put on paper, it still is

not time for any construction to begin. What is required now is

a complete outline of the game. This will determine what

media will be required to build the levels, allowing the

developer to assemble the necessary media library, to start

building the game with.

Starting the Media Library

The first necessary media component is the TXL file of

base textures. This should be assembled prior to building the

level. As brushes are added to the level, they will require a

texture to be applied and it is important to have these textures

ready for use before starting any level construction. This is

about all that is required, to begin building the main structure

of a level. It can be previewed using the default RF settings

and media can be added to the level as required. However, if

the game is a third person game and the original RF actor is

not used, then it is best to first model the player actor as well.

This will allow the level builder to fine tune the dimensions

Where to Find Media

There are many sites

on the Internet dedicated to

distributing public-domain

and royalty free textures.

RFDN has a huge collection

of complete texture libraries

which come in many

formats. RFDN also has

many RF ready actors and

fabricated objects, which

can be used to quickly add

detail to levels. The RFDN

site is found at:

rfdn.realityfactory.ca.

3D Games with Reality Factory

20

before any actual structure is built.

TXL files are built using the TXL File Editor, which is

very straight forward and easy to use. Just run the program

and drag and drop all properly formatted media into the TXL

File Editor list or viewing window. Save the TXL file in the

media\levels directory.

This chapter focused on the necessary requirements

prior to building a level. In the next chapter, the focus will

broaden to examine the necessary media that is required to

build an entire game and the stages at which these elements

are required.

Game Planning

21

Designing a game can be broken down into two major

steps. The first part is the idea for the game itself. Outlining

the premise, the story and the game play features must be

done first and be clearly documented. The second part is to

take this idea and to create a game with it, in accordance to

the demands of the game engine. This chapter will focuses

on the second part. The game that is created through the

course of this book is a simple First Person Shooter with a

few puzzle elements. Outlined in this chapter, is a procedure

for creating a FPS demo with Reality Factory.

Stage One

Stage one of the game building process involves

determining whether or not RF can reproduce the features

required for the game play. The game idea is then altered to

accommodate any limitations and a method for applying each

feature is outlined. This step helps to realize the feasibility of

the game. Take into consideration, everything that was

outlined in the previous chapter.

Stage Two

Stage two is the collecting of the minimum media

3D Games with Reality Factory

22

Stage One
Planning the game idea and

premise.

Before a game can be made, a game premise must be

established first. The game must be thoroughly planned as

well as the levels that are to be built. The next process is to

turn the ideas on paper into a 3D game.

Stage Two
Start the minimum media

library.

First build the base textures and TXL library and any

other media that will be required for the basic structure of the

game. If the game is a third person view, then this includes

the player actor.

Stage Three
Build the basic level structure

and add basic lighting.

Build the basic structure of each level and set the

basic lighting. Add as many game play elements that do not

use pawns. Create any doors that will be used and any other

world models as well.

Stage Four
Begin to build the actor media

library and add weapon actors

to the game.

With the level structure built and the base textures

applied, any pawns and enemy actors that are intended for

the game should be collected and animated. This includes the

player weapon actors.

Stage Five
Develop the pawn scripts and

add the pawns to the game.

Pawn scripts are developed in a separate small level

that is quick to load. Once the scripts are working, the pawns

are added to the levels and the scripts are refined to work

with the specified game play.

Stage Six
Build the Effects Library. Add

audio and effects to the

game.

At this point, there should be a playable level with

interactive pawns. Now the audio is added to the game and

the visual effects graphics are enhanced and modified.

Stage Seven
Create the media needed to

connect levels and connect

each level to the next.

The levels are now brought together into a single

demo game. Create any splash screens and cinematics that

will be used for the demo. Adjust the ChangeLevel entities to

link each level.

Stage Eight
Create a new menu for the

demo.

All that is required now to create a complete demo is a

new menu for the game. Prepare the menu graphics and then

create a new menu.ini file.

Stage Nine
Package the demo for beta

testing.

Package the demo and minimize the necessary

media. Play through the demo at least once to be sure that

everything is included. Change the Icon and the RF exe name

and then package a demo for beta testing.

Game Planning

23

library required to build the basic structure of the level. This is

the TXL library of base textures. For this demo, the Basic

Media Library can be downloaded from the Bookshock web

page. For a unique demo, the texture images should all be

placed into a single directory for easy storage and then made

into a TXL file using the RF TXL File Editor. Save the TXL file

in the RF, media\levels folder. When level construction

begins, the first step is to load this TXL file.

Professional game development teams, usually use a

single, brightly colored texture, to create the basic level

structure. This one texture level, is then handed over to a

team of texture artists, who add the final look to the game. A

small team of indie developers however, will be better suited

to create a library of base textures. There are many

advantages to this, that will save a small development team a

great deal of time down the road. It also allows for a beta

testing demo to be released much more quickly and for a

more detailed feedback from the testers.

Stage Three

Stage three is where the level construction begins.

First the basic walls, floors and ceilings are created, then any

doors are added. The level is taken as far as it can be, adding

as much game play that does not involve “player enemies.”

The objective is to create a level that can be walked through

and examine without being hindered by enemies. When the

basic structure has been added, the lighting can be applied

the level. Again, the lighting does not have to be very fine

tuned at this point, just allowing enough to direct the player

path.

3D Games with Reality Factory

24

Stage Four

Stage four is where level construction stops for a

moment and the Actor Library is assembled. This includes all

enemy pawns and weapon actors. Now, this stage could have

been been performed by a modeler while stage three was in

progress, but for a “one person team,” it can be taken care of

after the basic world building stage. The library should include

all of the animated enemies, the animated weapons, the

projectiles for the weapons, any Attribute actors and any

Static Entity actors. They should all be made into act files and

placed in the RF media\actors folder.

Stage Five

Stage five is actually four separate parts to it. Each will

interact closely, so this stage of development is all done

within a smaller test level. The four steps to this stage include,

writing the pawn scripts, adding the pawns to the level, adding

the player weapons and modifying the HUD. This may seem

like a lot of work for one step, but the only time consuming

work is in the scripting of the pawns. Adding the weapons and

modifying the HUD is a quick and simple process in RF. Both

are defined in later chapters dedicated to them. Once again,

these steps are performed in a smaller and much simpler

“test level,” that can easily be loaded and compiled. This way,

there isn’t the need to load a complex level, just to make

subtle changes and also helps to make developing the pawn

script, a much more efficient process.

Game Planning

25

Stage Six

Stage six is devoted to level esthetics and effects. At

this stage, a playable demo level should be ready for sound

and visual effects to be added to it. Again, a media library is

assembled containing the sound effects, the explosion

bitmaps and the final sprites that will be used in the level. Any

wall decals which are to be added as level detail is also

added at this point. The final result is a playable level with

enough visual and audio effects to call a completed and

ready for beta testing. However, a game is bit more then a

playable level and now these completed levels must be

combined into a complete demo game.

Stage Seven

Stage seven involves bringing the levels together and

creating any splash screens and cinematics that will be

played between levels. Each level for the game demo has

the ChangeLevel entities altered to go from one level to the

other and display the appropriate media in between. Now the

demo has come together and should be playable from start to

finish.

Stage Eight

Stage eight is the second last stage of development

and involves the creating of a custom game menu. Once

again, a media library for the menu graphics is assembled

and the menu.ini file is modified to display these custom

images as a new menu. This is one of the quicker stages of

3D Games with Reality Factory

26

development, but should have some consideration as to the

quality of the graphics. A nice looking menu screen can help

to pass on the game mood and atmosphere. The menu can

display such things as, how to play, the game controls and

credits. It is important to not skimp, when it comes to building

a menu. The menu buttons should be clear to the user and

the controls should also be easy to locate. An example of a

well designed menu is found n the RF demo game Sons of

Mars and an example of a bad menu design, can be seen

with the RF demo game, Crypt Spawn.

Stage Nine

Stage nine, the packaging and distribution stage, is

the final step to developing a game demo. At this point, the

game is brought down to the minimum amount of media

needed to run it and the RealityFactory.exe file is renamed

and the icon is replaced with a new one. The minimized

package is now assembled into an installation file, using one

of the popular installation builder programs available. The

demo is now ready for the final test run and it can then be

distributed for feedback testing.

Using the World Editor

27

Of the many tools that come with RF, the tool that will

see the most use is one of the World Editors. Three such

world editors come with RF, but the focus of the book will be

World Editor 2. In the opinion of the author, World Editor 2 is

the most stable and reliable of three.

3DT and BSP

World Editors create what is know as a BSP file. BSP

stands for Binary Space Partitioning and refers to a method of

creating 3D geometries, by dividing up a larger area into

smaller areas within. A BSP file is the actual level that is

loaded by RF. It contains all the geometries and Entities that

are recognized by the engine. The BSP format for RF is

particular to RF and can not be used with any other engine.

When a world is created using a World Editor, the file

is saved under the 3DT format. This is a text file, which

contains all of the world information. What the World Editor

does is take this 3DT file and compile it into a BSP file. All

3DT and BSP files, are stored in the RF media\levels folder.

RF also allows for MAP files to be imported and used

in a level. These can be used to create terrain geometries that

can be placed in a level to act like hills. More about using

3D Games with Reality Factory

28

3D Axis

Up: -Y

Down: Y

Left: -Z

Right: Z

Forward: -X

Backward: X

MAP filesas terrains in a later chapter.

World Editor 2

World Editor 2 was programmed by Michael R Brumm

and is distributed as Shareware. If you use World Editor 2 to

create a commercial game that will make profit, then it is your

legal obligation to send $20 USD to Michael R Brumm. See

www.michealbrumm.com/projects.html for information.

The World Editor 2 interface is very different from the

other two editors. It is designed to be used most efficiently, by

using a mouse/keyboard combination of commands. Before

examining these however, start World Editor 2 and take a

look at the 4 viewport windows. Below is a diagram which

outlines these windows and their relevance to the X, Y and Z

vectors of the level being created.

Using the World Editor

29

World Editors use three, 2D view ports so that a brush

can be manipulated or rotated along any of the three axis. A

brush will move or rotate, in a direction that depends on what

viewport it is being modified in. The camera viewport in the

bottom right corner, is where all the texturing is done. In the

camera window, brush faces are selected by clicking on them

and the textures are then applied and aligned.

The Grid

The three modelling viewports all display a grid pattern

in them. By default, this is made up of 128 x 128 texel areas.

Within this grid is a smaller sized grid, which is the Snap Grid.

The size if this grid is defined in the Edit menu, under the

Snap Settings option. By default, this is sized to 8 x 8 texels

and should be kept this way unless a smaller Snap Grid is

required. When Snap is set to ON, any brushes made will

snap to fit against this grid. This is the number one most

critical feature required by a BSP world editor. Without using

Snap, the level would end up being filled with ‘leaks’ that will

prevent compiling.

Navigating the Viewports

A viewport is activated by selecting a brush within the

viewport. The view within the viewport itself, can be moved

around by holding down the CTRL key and then, using the left

mouse button, click - dragging the view within the viewport.

The Camera Viewport, is a bit more intricate. There are

basically two means of navigating the Camera View. The first

is through the Camera Window using the following control

scheme.

3D Games with Reality Factory

30

• Forward : Left Mouse Button + CTRL Key + move mouse

forward.

• Backward : Left Mouse Button + CTRL Key + move

mouse back.

• Turn Left : Left Mouse Button + CTRL Key + move

mouse left.

• Turn Right : Left Mouse Button + CTRL Key + move

mouse right.

• Look Up : Right Mouse Button + CTRL Key + move

mouse forward.

• Look Down : Right Mouse Button + CTRL Key + move

mouse back.

• Straight Up : Both Left and Right Mouse Button + CTRL

Key + move mouse forward.

• Straight Down : Both Left and Right Mouse Button +

CTRL Key + move mouse back.

• Move Left : Both Left and Right Mouse Button + CTRL

Key + move mouse left.

• Move Right : Both Left and Right Mouse Button + CTRL

Key + move mouse right.

These controls, navigate the camera through the

Camera Viewport. In most instances, this usually runs

smoothly, however when levels become very large or

detailed, it will be quicker to use the modeling viewports to

manually select and move the Camera Entity. The Camera

Entity is always visible in the viewports and is displayed as a

green arrow. This can be selected and moved to any position

in the viewport. When the camera is positioned into place, the

view is then updated. This is the second method used for

navigating the Camera Viewport. When a level becomes

difficult to navigate in the conventional manner, then this

Using the World Editor

31

method should be used instead.

The Tool Bar

Below is a diagram which outlines the Tool Bar found

in World Editor 2. The most commonly used buttons are

outlined below.

• Save, Cut Copy and Paste - These are self explanatory

but are only applied to already created brushes.

• Lock Y, Y, Z Movement - When any of these are

selected, the selected brush will not be able to move

along the locked axis.

• Build BSP - This refreshes the camera window with

whatever new brushes may have been added to the level.

This button should always be selected before performing

any texturing of the level.

3D Games with Reality Factory

32

• Snap - This button toggles the Grid Snap on or off.

• Compile - This button opens the Compile Level dialog box

and is explained further thought out the following

chapters. When a level is compiled, a BSP is made from

the 3DT.

• Move - When this button is selected, the selected brush

can be moved. When the right mouse button is held down

as opposed to the left, the brush will rotate. The keyboard

shortcut is CTRL-R.

• Scale - This option allows the brush to be scaled in two

axis. World Editor 2 can only scale one brush at a time.

The keyboard shortcut is CTRL-W.

• Shear - An example of shearing a brush is outlined in the

next chapter. The Shear shortcut is CTRL-Q.

• Brush, Face and Entity Properties Dialog - These open

the properties box for either a brush, a brush face or an

entity. Below are screenshots of each dialog box. The use

of each is outlined in the next chapters.

Using the World Editor

33

These features are also available through the menu,

along with many others.

The Tab Bar

The Tab Bar contains all of the interface features that

used to build the level. The headings that will be examined in

this chapter include, Template, Texture and Sky.

• Template - The Template tab is where most of the world

building will occur from. It contains six buttons which

create templates for differently shaped brushes. When

one of these buttons are selected, a dialog box appears

which asks for parameters that define the dimensions of

the brush. When OK is selected in the dialog box, a

template of the brush will appear in the level. This brush

has not been created yet and the level editor is now in

Template Mode. To create the brush and enter brush

mode, hit INSERT. (In RfEdit and RfEditPro, the key which

inserts a brush is ENTER.) This will create the brush, with

the current texture selected in the Texture Tab, applied to

the faces. The Template Tab also has the interface which

adds Entities to the level. This is the first pull down menu

and contains a list of every entity that is available in RF.

To add an Entity to a level, select the entity from the menu

and then select the button beside the list. A small blue x

will appear at position 0,0,0. This is the template for the

entity. The entity is added to the level by hitting INSERT.

• Sky Tab - All levels can be surrounded by a Sky Box. This

is a combination of images which surrounds a level in

order to display a scenic background. Each check box

3D Games with Reality Factory

34

activates the specific sky face in the level and the

pulldown menu defines the image. It is a list of all textures

in the TXL library being used for the level. In the next

chapter, the Sky Box will be used to display images of

outer space. The player will be given the impression that

they are aboard a space ship.

• Textures Tab - The Textures tab is displayed in the side

bar. It is a list of all the textures within the TXL library.

Before a brush is added to a level, the texture which will

be applied to it, should be selected from the Textures tab.

Textures can also be added to the TXL library as needed,

by using the Add button. This opens a file dialog box set

to search for bitmaps. The Apply button, is used to apply a

texture to a selected face of a brush.

This chapter served as a brief introduction to the

World Editor 2 tool that comes with RF. In the next chapter,

this tool will serve as an example to create a demo game

named Space Escape.

Building a Level

35

Building a level with Reality Factory is a fast and

efficient task. Small levels are easily built with little

complication and large levels can be handled safely. This

chapter describes the first stage to building a level. The stage

involves adding enough brushes, to create a basic skeleton

for the level. These brushes include the outer Sky Box, the

interior floor, the ceiling and the main interior walls.

World Editor Basics

No matter which world editor is chosen to build the

level, there are common points which must be considered, in

order to efficiently create worlds. These are considerations

that will help the designer prevent errors that may prevent the

level from compiling.

• Snap - The most critical feature for any world building

program is the ability to snap brushes into alignment with

the grid. Without this feature, a level would be filled with

numerous points where the brushes do not touch each

other face to face. This can cause unwanted light leaks,

extra faces to be drawn or worse level leaks. Before any

brush is added to the world or manipulated in any way, be

sure to know what the snap setting is and that it is toggled

on. The default snap setting is 8 texels. Always start a

3D Games with Reality Factory

36

level with this setting.

• Selected Brushes - There are many ways to select a

brush or entity in World Editor 2 and this makes it easy to

accidently select more then one brush or entity. This can

lead to undesirable results when manipulating the

selected brushes. Before moving a brush, be sure that no

other brushes are selected.

• Copy and Paste - World Editor 2 has the ability to copy

multiple brushes and entities. This is very useful and

allows for a quick and means of building the main

structure of a level. However, it is very important that the

Paste action never be performed with the keyboard using

CNTRL-V, or it can easily create multiple brushes in the

same place. Always use the menu or tab bar, to paste a

brush into the level.

• Wireframe Mode - When building the level, be sure that

the texture window is in Wireframe Mode. Only use

Texture Mode when texturing the level. The camera mode

is set under the Camera menu.

• Moving Multiple Brushes - If multiple brushes are

selected, then snap can effect there placement when

repositioning them. To safely move multiple brushes, turn

Building a Level

37

off Snap and use the Move To feature found under the

Modify menu. A dialog box that appears will allow the

brush to be moved using an exact or relative value. Be

sure to turn on Snap when done.

• Selecting Brush Faces - Many people say that they have

difficulty selecting brush faces in the camera window,

using World Editor 2. Brush faces can be selected by first

selecting the brush in one of the modeling windows and

then from the Edit menu choose, Select - Faces - All in

Selected Brushes. The faces can then be scrolled through

using CNTRL-4 and CNTRL-3. If a face must be selected

in the camera window, then first be sure to select, Camera

- Refresh. This will update the camera window with any

newly created brushes.

Starting the World Editor

For this example, a level for the demo game Space

Escape will be created. This game can be downloaded from

the Bookshock or Reality Factory web site. It is a very simple

level that is an example for readers of this book. Take a look

at the level to get a visual idea of what it should look like. In

order to recreate the level, the Media Pack for this book must

be downloaded.

Stage two of developing a game involves obtaining of

the basic media. From the Media Package, extract the

escape.txl file and place it in the RF media\levels directory.

This takes care of stage two. Now start World Editor 2 and

first save the file under the name escape.3dt. This should

always be the first step. Next, before adding any brushes,

select Properties, from the File menu. Under the Texture

3D Games with Reality Factory

38

Library heading, select the Browse button and choose the

escape.txl file in the media\levels folder. Select, File - Save.

The level is now ready to start having brushes added to it.

Adding Brushes

Brushes are added to a level using the Templates

Tab. There are six basic brush shapes that can be added to

the level by the World Editor. They are, Cube, Cylinder, Cone,

Sphere, Stairs and Arch. These brushes can be made solid or

hollow. To start the Space Escape demo level, a large hollow

cube will be used to define the borders. This hollow cube will

act as a Sky Box that displays a star pattern. To add the

hollow box, select the cube shaped button under the

Template Tab. A dialog box will appear asking for the

dimensions of the cube. Match the settings to those shown in

the screen shot below.

These settings create a hollow cube with walls that are

16 texels, thick resulting in an interior length of 1296 texels, a

width that fits 512 texels and a height that can contain 144

texels. By adding an 8 texel high floor and ceiling, the interior

height comes to 128 texels. This will be the height of the walls

Building a Level

39

This is a top view of the level

for the Space Escape Demo.

The squares are a 128 x 128

section of the Grid. The gray

area represents the floor and

ceiling, while the light grey

area is the surrounding outer

brush. The thick black lines

are the 8 texel wide walls

that make up the structure of

the level. All measurements

shown are in texels.

3D Games with Reality Factory

40

in the level.

Adding the Sky

Before continuing with building the level, it would make

sense to stop and flag the faces of the outer hollow brush as

Sky faces. To do this, select the brush in one of the editor

windows and then under the Edit menu got to, Select - Faces

- All in Selected Brushes. The brush should go from a blue

color to a purple color. The purple color represents a selected

face.

Click the Open Face Properties button or from the

View menu select, Face Properties. Click the check box

marked Sky as shown below.

Now close the dialog box and select the Sky Tab from

the right side of the World Editor. The Sky Tab has a check

Building a Level

41

box for six sides of a box. Check in all the boxes and then

from the corresponding drop down menu, set the textures to

match the following list. Be sure to also set the Rotation

Speed to 0 and the Scale to 1.

• Left - space1

• Right - space3

• Top - space1

• Bottom - space1

• Front - space2

• Back - space1

These settings set up the images which are used to

build the Sky Box. As the level progresses, other faces will

also be flagged as sky, in order to simulate windows. Now

that the outer hollow brush faces have been flagged as Sky

and the Sky Box images defined, the floor and ceiling can be

placed within the hollow cube.

Adding the Floor

The floor is made up of three brushes, that are each 8

3D Games with Reality Factory

42

texels high. Once again select the Template Tab and select

the Cube Brush button. Set the values to match those in the

screenshot and select OK. This creates a solid brush that is

512 long, 512 texels wide and 8 texels high.

This brush must be positioned to snap right against

the bottom of the outer hollow brush. Next, two more 8 texel

high brushes are added to the level. The first one has the X

dimensions to be 256 and the Z dimensions to be 512. The

second brush has the same dimensions but reversed. See

Figure-1 for a reference to their positions. These three

brushes make up the floors for the Storage and Air Lock

Rooms, the Hallway and the Control Room.

These brushes must now be textured with the floor

texture. Click on one of the three brushes in a modelling

window and then while holding down the SHIFT key, click on

the other two brushes. This is how multiple brushes are

Building a Level

43

selected individually. If the outer hollow brush is accidently

selected, then while still holding down the SHIFT key, select

the outer brush again. This will deselect it. With all three

brushes selected, go to the Edit menu and choose, Select -

Faces - All in Selected Brushes. The brushes should go from

blue to purple. Select the Textures Tab in the World Editor

and select the texture named FloorBase_02. Click the Apply

button. This will apply this texture to all of these faces. Now

click the open Face Properties button and set the texture

scale settings to 0.5 for both the X and Y scale. See the

screenshot on the previous page. This makes the image

much crisper at close distances. Now to copy the floor, in

order to make a ceiling.

If the three floor brushes are still not selected, then

select them again using the SHIFT key. Under the Edit menu,

select Copy. Now under the Modify menu select, Move To. In

the resulting dialog box, select the Relative option. Then in

the Y box, enter 128 and then add a - as a prefix, so that it

ends up being -128. Select OK to move the selected brushes

to the ceiling. To replace the floor brushes, select Paste from

the Edit menu. The outer hollow box should now contain an 8

texel high floor and an 8 texel high ceiling. This then allows

for a 128 texel high brush, to fit in between as a wall.

Adding Walls

The walls from the level will be made from a single

128 x 128 x 8 brush, that will be copied and scaled as

needed. Examine Figure-1 for a reference to the position and

size of the brushes. Start by selecting the texture named

OutWall_11 and then click the Cube brush button from the

3D Games with Reality Factory

44

Template menu. Create a brush that has a X size of 8, a Z

size of 128 and a Y size of 128. Position it on the map and

scale it to be one of the first side walls. Make sure that it

snaps right against the inner face of the hollow cube.

Under the Edit menu select, Select - Faces - All in

Selected Brushes and open the Face Properties dialog box.

Building a Level

45

This step will align the texture to properly fit on the brush.

Examine the screenshot of the Face properties box and the

wall. Notice that the check box marked Texture Lock is

selected and that the Y Offset is set to 64. Texture Lock is

applied so that the brush can be moved without having to do

too much re-texturing. The wall should look like the face

shown in the screenshot.

Compare the texture image to the face of the brush. it

seems that the face has been applied to the brush upside

down. To correct this, select the button marked Flip, beside

the Y offset setting in the Face Properties dialog. The texture

will then be applied right side up. Now take a look at the 8

texel wide sides of the brush. These textures are still upside

down. To select these faces, Select all the faces in the brush

and the use CTRL-4 and CTRL-3 to scroll through each face,

until the side of the brush is highlighted in purple. For each of

the two 8 texel sides of the brush, hit the Flip button again.

Now, all of the faces should have the textures properly

applied.

These walls are then copied and pasted to create

duplicates, which are then positioned and scaled. Examine

Figure-1 closely to see exactly where the brushes go and the

correct size. Be sure to use the grid markings as a reference

and remember to not use the keyboard, for any pasting of a

copied brush. The only wall that is not 8 texels thick is the

center wall that divides the Store Room and the Air Lock. This

wall is scaled to be 16 texels thick. Before adding any

brushes, be sure that the Snap Settings are on and set to 8

texels. Add the walls, that make up the Store Room and the

Air Lock. The next step will be to build the Hallway area.

3D Games with Reality Factory

46

Adding Sheet Brushes

The Hallway section of the ship will be made up of 6

brushes. Four will be corner pillars, that are simply 64 x 64 x

128 brushes, textured with the OutWall_09 texture. These are

positioned in each corner as shown. The two walls which

make up the side of the Hallway though, are Sheet brushes.

A Sheet brush, is a brush that will only render one face and

make it visible from both sides. Sheet brushes are well suited

to be textured with a transparent texture, like the one in this

example. There are a few pointers to remember however

when adding a Sheet brush.

• When a sheet brush is created, the face that is always

made the sheet is the brushes top face. This face is

highlighted in yellow.

• The only face that can be textured, is the sheet face that

is highlighted in yellow. Never select multiple faces of a

sheet brush and never edit any other face in any way.

This can cause rendering glitches, which can display more

then one face.

• Keep sheet brushes at least 4 texels thick, unless they are

going to be used as a surface decal. If a sheet brush is

going to be used as a wall, then it is a good idea to keep it

at least 8 texels thick.

Add the four corner pillars, by creating a single brush

that is 64 x 64 x 128 and then texture lock all faces with an

adjusted wall texture. Copy and paste three more of these

brushes into the remaining corners. To add the first Sheet

brush, open the Cube Template dialog and match the settings

shown in the following screenshot. Note that the check box

Building a Level

47

marked Sheet, is checked. Select OK and then from the

Texture Tab, choose the texture named OutWall_11. This is a

32 bit TGA texture with an alpha map. Hit the Insert key to

add the brush from the newly created template.

The brush will appear in the world with the Sheet face

pointing upwards. It must be rotated 90 degrees, to make the

Sheet face resemble a wall. Select the Sheet brush in the

Front XY modelling window (bottom viewport) and then

choose Rotate from the Modify menu. In the resulting dialog

box select, Right and 90 degrees. Click OK to rotate the brush

90 degrees in a clockwise direction. Position the sheet brush

on the right side of the Hallway as shown in Figure-2. Before

copying the brush to create the right side of the Hallway,

select all of the faces in the brush and then use CNTRL-4 to

scroll to through until only the Sheet face is selected. Click the

open Face Properties button. The X and Y offsets will both

have to be set to 64. The face of the wall should look like the

screen shot on the following page. To create the other wall,

copy the brush and then rotate it 180 degrees in the Top XZ

modelling window. Position the new brush on the right side of

the hallway and the select Paste from the Edit menu, to

restore the brush for the left side.

Sheet Faces

Figure -2

3D Games with Reality Factory

48

Adding a PlayerStart Entity

At this point, the level can be compiled and previewed.

Before doing so however, the level needs two entities added

to it. From the Template Tab, use the first pulldown menu, to

scroll down to find PlayerStart. See the side bar screenshot.

Click the Add Entity button, located beside the pulldown

menu. A blue entity template will appear at position 0,0,0.

Move the entity to the bottom left corner of the level and

position it right against the floor. Now do the same with a

PlayerSetup Entity. This entity is virtual, so it can be

positioned anywhere inside the hollow cube where there is

room. These two entities are required to start a level. Without

these entities, the level will not compile.

Compiling the Level

Although there are still many brushes to add to the

basic structure of the level, the BSP can be compiled and

Building a Level

49

previewed. Under the Tools menu, select Compile. Match the

settings in the resulting dialog box to those in the screenshot.

Be sure to check the Preview option at the bottom. When the

level compiles, which can take anywhere from a few seconds

to a few minutes, the user is prompted to preview the level.

Selecting Yes, will load and run the level. Examine the level

so far, specifically the Hallway. The Sky Box should be visible

through the side panels.

Building the Control Room

Take a look at Figure-2 again, this time looking at the

Control Room. Five brushes have been added to make up the

interior. Two side walls, two corner brushes and a front brush

3D Games with Reality Factory

50

which is a sheet brush. Before examining how the corner

brushes were made, add two walls to the sides of the control

room. Copy and paste them anywhere from the level and then

scale them to fit. Be sure that Snap is on and that the window

is zoomed in enough to see the Snap Grid lines.

The two brushes in either corner are angled inwards.

Theses brushes were made by creating a triangular square

brush and then Shearing it into shape. Below is a step by step

examination of how to create the two corner brushes.

Create a Cube brush with the following dimensions.

• Top X - 128

• Bottom X - 128

• Top Z - 32

• Bottom Z - 64

• Y - 120

Select the newly created brush in the Front XY window

and rotate it 90 degrees to the right.

Using the Top XZ viewport, position the brush in the

left hand corner of the Control Room.

Select the brush and then from the Modify menu

select, Shear. Position the cursor to the right side of the brush

and then shear it upwards as shown in the illustration. Be

careful not to overshoot the Snap or the brush may shear a

bit too much. If this happens, just shear it back to where it

should go.

Top View

Top View

Building a Level

51

With the first corner brush created it can then be

copied and moved into the right hand corner. The brush is

then rotated 180 degrees in the Front XY window and the old

brush is then pasted back into place. What remains is 256

texels, between the two corner brushes. This space will be

filled with a Sheet Brush, similar to those in the Hallway. Copy

one of the Sheet brushes in the Hallway and move it to the

front face of the Control Room. Be sure that the yellow side of

the brush (the Sheet Face) is facing inwards, away from the

outer hollow cube. Scale the brush to fit between the 256

texel area. Do not forget to paste the old Hallway Sheet brush

back into place.

The final step, is to alter the texture scale of the Sheet

brush in the Control Room. Select all the faces in the sheet

brush and then scroll through to the Sheet Face or select the

sheet face in the Camera Viewport. Open the Face Properties

dialog and then set the texture X Scale to 2. This will stretch

the texture to fit the 256 texel brush and make it look like one

window instead of two. Adjust the X Offset, so that the texture

is properly aligned. Below is a screenshot, of what the sheet

3D Games with Reality Factory

52

face should look like.

Compile the level and examine the structure. The first

part of the basic level structure is now complete. In the next

chapter, colored lighting will be added to the level, in order to

experiment with the RF light entity.

Lighting the Level

53

Lighting a small level such as this one is a very quick

and simple task. Before going over adding lights to the Space

Escape demo level, a brief discussion of using lights with RF

is in order. There are many types of lights that can be used in

RF, but the only one that should be used for normal lighting is

the is the Light Entity. This is the simplest and most basic light

entity. It is designed to be a static entity, that does not change

during run time. Other light entities such as the Dynamic Light

entity are much more versatile, but should be used very

sparingly, because they can quickly use up system resources

and slow the game down.

Level Lighting

There are three basic factors which define the lighting

of a level. These are the Light Scale of the level, the Default

Light Level and the intensity of the light entities. Below is a

breakdown of each factor and how they relate to each other.

• Level Light Scale - The Light Scale of a level is defined

under the Properties dialog which is accessed under the

File menu. The default light scale setting for a level is 2. A

smaller setting creates tighter shadows, but will decrease

frame rate. This is because the light scale of a level, has a

direct impact upon the number of polygons that are

3D Games with Reality Factory

54

drawn. A higher light scale setting will help to increase the

frame rate, but it will also reduce the sharpness of the

level shadows.

• Default Light Level - The Default Light Level is defined

when the level is compiled, in the Compile Dialog box.

This is the amount of light which will be applied to each

face in the level. The default setting is 128, which allows

for the level to be viewed without any lighting. When lights

are applied to a level, the default setting should be

brought down to 32 or 64, depending on the level

atmosphere. It isn’t wise to bring the light level down to 0,

because the player will not be able to use the screen

brightness, to adjust the lighting to a level of their liking.

• Light Intensity - The amount of light that is created by a

light entity, has to be large enough to cover the area that it

is meant to light. However, if the light is too intense, then

light leaks will be created. This effect shows up. as light

coming through doors and walls. In order to prevent light

leaks, the intensity of the lighting should not be too much

greater then the area it is meant to cover.

Lighting Space Escape

The diagram on the following page shows the Space

Escape level with the lights added to it. There are a total of 11

light entities in the level represented by blue x markers. The

squares above them, represent sheet brushes which will be

added to the level first.

Start by selecting the texture named LiteBase_01 and

then create a Sheet Brush with the following dimensions, 32

X by 32 Z by 4 Y. Insert it into the level and then select it.

Lighting the Level

55

RGB: 167 37 18
Intensity: 256

RGB: 244 244 0
Intensity: 256

RGB: 0 217 0
Intensity: 190

RGB: 0 0 255
Intensity: 256

3D Games with Reality Factory

56

Open the Brush Properties dialog box and select the check

box marked, Detail. This flags the brushes as a Detail Brush

and helps to make the level compile and run much more

efficiently. Any brush in a level that is not able to block the

players view, should be flagged as a Detail Brush.

With the brush flagged as detail, position it about eight

texels form the ceiling and then select Snap Settings from the

Edit menu. Set the snap grid setting to 1 texel and select OK.

Use CNTRL + Right Mouse Button + Mouse Forward, to zoom

in on the Front XY viewport, until the 1 texel snap grid is

visible. Position the first brush 1 texel away from the ceiling.

See the diagram in the side bar. With the first brush in place,

set the Snap grid back to 8 texels and then copy and paste

10 more brushes into position, using the Figure-3 as a

reference. The next step, will add the light entities to the level.

These will be positioned 8 texels away from the ceiling.

Adding the light entities to the level, will take as little

as 5 minutes. To add the first entity, use the pulldown list of

entities from the Template Tab, to scroll down to the entry

named light. This is the basic light entity. Select the add entity

button beside the pulldown list and then hit INSERT to add

the entity. Position the light entity 8 texels from the ceiling as

shown in the side bar. Each light entity will be placed directly

under the center of each of the square detail brushes.

Position the first light under any one of the sheet brushes and

then copy and paste 10 more under the rest. Be sure that the

Snap is on and set to 8 texels while doing this. The next step,

is to change the color and intensity of each light entity.

Figure-3 lists the RGB color settings and intensity for

each group of lights in the level. To modify the light entity

1 texel from
the ceiling.

8 texels from
the ceiling.

Lighting the Level

57

properties, select the light entity and then open the Entity

Properties dialog box. The properties of the selected light

entity, will appear in the dialog box. Double click on the color

entry and a Select Color dialog box will appear. Manually

enter the values into the R G B settings of the dialog and

select OK.

Then double click the intensity entry of the properties and

manually change the light property. Do this for every light in

the level, using Figure-3 as a reference to the entity

properties.

At this point all of the lights should be added and the

properties set. The level can now be compiled and examined.

Select Compile from the Tools menu and in the Default Light

Level entry enter, 32 32 32. Be sure that there are no hidden

characters and that the value is only 32 32 32. Click OK to

compile and preview the level. The Store Room and Air Lock

should have a blue lighting, the passage to the hall should

have green lighting, the Hallway should have yellow lighting

and the control room should have red colored light.

Adding lighting to a level is as easy as that. Add the

first light and then copy and paste the rest into position. Fast

and efficient. With the basic lighting added to the level, the

next step will be to add doors. This is the focus of the next

chapter.

3D Games with Reality Factory

58

Adding Models and Doors

59

World levels are mostly made up of static brushes and

entities. However, it is possible to create interactive brushes

and brushes that move. These brushes are referred to as

World Models. This chapter examines how to create world

models and use them as doors, area triggers and elevators.

Any brush or group of brushes can be made a model.

When multiple brushes are made a model, they then act like a

single brush. This is termed a world model brush. Any brush

can be made a model. To flag a brush as a model all that is

required is to select the Model Tab and then, with a brush

selected, click the Model Button. A dialog appears asking for

the name of the model. The brush is now a world model and

can have a number of different entities control it.

A model does nothing without an entity to control it.

The most common entities used with a model includes the

Door Entity, the Trigger Entity, the Moving Platform Entity and

the DestroyableModel Entity. By associating one of these

entities to a world model, the player will be able to interact

with it in a manner defined by the function of the entity.

Before going through the steps required to add the

doors to the Space Escape demo, start a new level and save

it under the name modeltest.3dt. Select Properties from the

3D Games with Reality Factory

60

File menu and set the TXL library to be, escape.txl. Create a

hollow cube that is 544 x 544 x 544. With 16 texel thick walls,

the interior becomes 512 x 512 x 512. Add a PlayerStart and

a PlayerSetup entity and use this as the test level.

Adding a Door

The first example of using a model will be a door. This

is the most common use of models for indoor levels. Before

going on to the example, it is important to how a door is

animated. Below is an outline of the door model keyframe

positions, that makes up the animation. The X is the pivot

point of the model and can be defined as required. For a door

that swings open, it is important to set the pivot point to

This is the start fame for the animation. In this case

the door is closed and waiting for contact to open it.

The next keyframe still has the door closed for 1

second after it has been activated. This is to allow for the

player to get out of the way, when the door opens towards

their direction.

The keyframe at 2 seconds, is the door in the open

position. This means that the door will take 1 second to

open all the way.

The door then needs to stay open for a given time so

that the player can walk through it. In this case, the door is

kept in the open position until the 5 second keyframe. This

means the door stays open for 3 seconds.

The last action is to gently close the door so as to

return it to the start position. This completes the full

animation sequence for the door.

K : 0.00

K : 1.00

K : 2.00

K : 5.00

K : 7.00

Adding Models and Doors

61

represent the position of the hinges. To create the door

model, start by adding a door shaped brush to the level. The

dimensions can be 64 X - 8 Z - 128 Y. Select the brush and

position it against the floor.

With the brush still selected, select Model from the

Models Tab. A dialog box will ask for the name of the model.

Name the model, door1 and select OK. Before adding the

animation keyframes, select the Set Origin button. A light blue

X will appear at the center of the model. This marks the pivot

point and should be positioned in the bottom right corner of

the brush, as shown in the previous diagram. When Set

Origin is selected, the button changes to Done. Select this

button when the pivot point is in position. Now the keyframes

can be added to the model, in order to animate it. Below are

the steps required to animate the keyframes.

• Key 1.00 - Start by selecting the button marked Insert, at

the bottom of the Models Tab. The button will change to

Done. Do not move the brush and just select the Done

button. In the dialog that opens enter 1 and select OK.

This creates the first keyframe of the animation.

• Key 2.00 - Be sue that keyframe 1.00 is selected and then

click the Insert button again. This time, select the Move

button from the Tool bar and right click the Mouse to

rotate the door into the open position. It will rotate on the

axis set by the pivot point. When the brush is in position,

select Done and enter 2 as the time.

• Key 5.00 - Select Insert and then Done without moving

the brush and then add 5 as the key time.

• Key 7.00 - For the final key frame, select Insert and then

rotate the brush back to the original position. Click Done

What to Read

From the RF docs, be sure

to read the following articles.

• Door

• MovingPlatform

• Trigger

• DestroyableModel

• LogicGate

• Message

3D Games with Reality Factory

62

and add a key time value of 7.

With the model animated, all that is required to interact

with it is to associate it with a Door Entity. Use the pulldown

menu under the Template Tab to scroll down to Door and

then add the Door Entity to the level. It can be placed

anywhere, but it is good practice to put it near the model it is

associated with. Select the added Door Entity and click the

Entity Properties button. Modify the following entries for the

Door Entity.

• Model - door1

• bReverse - true

• PlayerOnly - true

These settings associate the entity with a model

named door1 and only allows the player to activate it. The

bReverse entry makes the door reverse the animation, if it

hits the player while closing. Close the Entity Properties dialog

and compile the level. When the player makes contact with

the brush, the model will animate. Adding a door to a level is

as simple as that. Next the same method will be used to

create an elevator platform.

Moving Platforms

Add to the test level another brush with dimensions

128 X - 128 Z - 4 Y and position it against the floor. Select the

brush and make it a model. Name the model, platform1. This

model will have 4 keyframes added to it similar to the way the

door was animated. Key time 1.00 has the brush still against

the floor. This is the delay, which allows the player to step on

Adding Models and Doors

63

and off the platform. The next keyframe has the brush set to

the elevated position. To position the brush, lock the X and Z

axis and then using the Front XY viewport, move the brush

128 texels upwards. This is held in place for 5 seconds and

then the brush is returned to its starting position. See the side

bar for an example.

The entity used to activate the models animation, will

be the MovingPlatform entity. Use the template tab to add a

MovingPlatform Entity to the level and set the properties to

the following.

• Model - door1

• PlayerOnly - true

Compile and preview the level. When the player steps

on the platform, it should pause for 1 second and then lift the

player. The platform pauses at the top and then returns the

player to the ground. The player must step off and then on

the platform, to activate it again. This is the most basic use of

the Door and MovingPlatform Entities.

Models as Triggers

The Trigger Entity is one of the most versatile entities

found in RF. It acts as a virtual switch that can be controlled

by a model and be used to activate other events in the level.

The next example uses a model associated with a Trigger

Entity, to act as a Lock Release for the door model.

Start by adding a new brush to the level that is a 32 x

32 x 32 cube and position it 8 texels above the floor. Make it a

K 0.00
K 1.00

K 3.00
K 8.00

K 10.00

128 Texels

3D Games with Reality Factory

64

model and name it, trig1. Add only a single keyframe, that

positions the brush down through the floor of the level and set

the key time to 2. This creates a model that simply falls

through the floor when animated.

Use the Template Tab to add a Trigger Entity to the

level and modify the following properties.

• Model - trig1

• szEntityName - doortrig1

• PlayerOnly - true

• TimeOn - 60

These properties associate the trigger with the trig1

model and then names the trigger doortrig1. This name can

be used by other entities in the level, to associate themselves

to this one. The TimeOn property, sets the trigger to be on for

sixty seconds. The player has this much time to reach the

door. With the Trigger Entity properties set, select the first

Door Entity that was added previously and change the

following property.

• TriggerName - doortrig1

This associates the Door Entity with the Trigger Entity,

in a manner that makes the door only open, if the Trigger has

first been activated. Compile and test the level. Walk towards

the door and try to open it. The door should not open. Walk

over to the cube model and make contact with it. The cube

model will fall through the floor and the trigger will be

activated. Go back to the door and try to open it again. The

door is now unlocked and will open.

Adding Models and Doors

65

Callback Messages

Practically, a locked door should return some type of

message that informs the player that the door is locked. All

that is required to do this is to add two more entities to the

level, a Logic Gate and a Message Entity. Use the template

tab to add a Logic Gate and a Message Entity to the level and

position them near the door model. Before setting the

properties of these two entities, edit the szEntityName

property of the door entity as follows.

• szEntityName - door1

This names the Door Entity door1, so it can act as a

type of trigger for other entities. in this case, it will be a

callback trigger for the Logic Gate. A Callback is the term

given to a momentary trigger action ,that is only detectable by

a Logic Gate type 6. This is the callback setting for the Logic

Gate Entity. When the entity detects a callback, it will act like

a stable trigger that can activate other entities. In this case,

the Logic Gate will trigger the Message entity. Below is a

diagram which illustrates the association between the entities.

Door
sEntityName - door1

TriggerName - doortrig1

Trigger
sEntityName - doortrig1

LogicGate
sEntityName - gate1

TriggerName - door1

Type - 6

Message
TriggerName - gate1

3D Games with Reality Factory

66

Select the Message Entity and modify the properties to

have the following settings.

• DisplayType - Static

• TextName - LockedDoor

• TriggerName - gate1

The property DisplayType refers to a heading which is

defined in the message.ini file. Use NotePad to open the

message.ini file (not message.txt) and be sure that there is a

heading titled Static. The corresponding data defines the time

that the message is displayed and the position on the screen.

The TextName property refers to a heading named

LockedDoor, found in the message.txt file. Edit the

message.txt file (not message.ini) and add the following entry.

[LockedDoor]

The Door is Locked

The message entity uses the TextName property to

refer to this entry and display the message, The Door is

Locked. When the trigger is activated and the door is

unlocked, the message will not be displayed. Compile and

preview the level. This time, when the player tries to open the

door, the message will appear in the top center of the screen.

Double Doors

Adding double doors is easily done, using the

NextToTrigger property of the Door Entity. To create a set of

double doors, create two doors and animate them to act like

Adding Models and Doors

67

double doors opening and closing. Add a Door Entity to each

door model. To make them act like double doors, set the

NextToTrigger property of one door, to match the model of

the opposite door. Below are the property settings for two

Door Entities, that work together to make two door models act

like double doors.

One Way Doors

The same method that was used to create a locked

door, can be used to create a one way door. A one way door

is activated by another trigger, that is only found on one side

of the door. To create a one way door, change the bOneShot

property of the Trigger Entity to false and delete the second

keyframe of the cube model. Position the cube model in front

of the door, about 32 texels away. Select all the faces in the

cube model and open the Face Properties dialog. Select the

check box marked, Transparent and set the value to 0. This

creates an invisible brush. With the cube brush still selected,

open the Brush Properties dialog and click the check box

marked, Empty. The brush can now be used as an invisible

area trigger that the player can walk through.

In order to make the door be activated by the trigger

• Model - door1

• bReverse - true

• PlayerOnly - true

• NextToTrigger - door2

• Model - door2

• bReverse - true

• PlayerOnly - true

• NextToTrigger - door1

3D Games with Reality Factory

68

and not the player, modify the following property in the Door

Entity.

• bNoCollide - true

This prevents the player from opening the door and

only allows it to be activated by a separate trigger. In this

case, the trigger is the invisible cube brush. Compile and

preview the level. This time, the door will open only when the

player passes through the area where the invisible cube

brush is positioned.

Adding Doors to Space Escape

Two types of doors are found in the Space Escape

demo. Single sliding doors and double sliding doors. These

will be added to the level by making one door model and then

cloning that model as required. Three single doors and three

double doors will be added to the level, for a total of nine

models.

Figure-4 is the layout of the level with the models and

door entities added. Use this as a reference, when positioning

the doors. To start, set the Snap Grid to 2, select the texture

named door01 and create a brush with the dimensions 64 X -

4 Z - 128 - Y. Position the brush, as the door to the first room

where the player starts. Zoom in until the snap grid is visible

and precisely position the brush so that it is 2 texels (1 small

grid space) away from the edge of each wall. See the sidebar

illustration for an example. When the door has been

positioned, it can then be animated to slide open and closed.

See figure-4, for the position at each keyframe. Before

8 Texels 4 Texels

2 Texels of space on

either side of the door

brush. This appears as

one small grid space.

Adding Models and Doors

69

K 0.00

K 1.00

K 5.00

K 7.00

3D Games with Reality Factory

70

animating the door though, it would be prudent to align the

textures. In regards to this, one should never apply the

Texture Lock to a model that is animated. The model will

move in the level, but the texture will remain in place. See the

screenshots in the side bar for what the doors should look

like. The Y Offsets will have to be set to 64 and the X Offsets

will have to be adjusted as the door models are added to the

level. Obviously, this is because each door will have a

different X position and texture lock can not be applied to the

original.

With the brush textured and selected, click the Model

button from the Models tab. When prompted for the model

name type door01. Animate the model as shown on Figure-4

and add a Door Entity to the level only changing the model

property to door01. Compile the level and test out the door. It

should slide open as soon as the player comes in contact with

it and then close after 4 seconds.

Before cloning the model to create other doors, add

another model door, but animate it to open in the opposite

direction. Name this model door02 and add a Door Entity to

control it. The rest of the doors can now be quickly cloned as

needed. This is a quick and efficient process. Simply select

the model to be cloned from the Models window and click the

Clone button. A dialog box will ask for the name of the model.

Continue to name them sequentially door03, door04, etc.,

cloning the appropriate model, for the required direction it

needs to open towards. Hit OK and a clone of the model will

appear in the level. Position these where required. This works

because the new position of the clone, does not need any

rotating. If it did, it would change the axis of the animation.

When all the door models have been added, copy and paste

Adding Models and Doors

71

Door Entities for each. For the double doors, be sure to set

the NextToTrigger property, to the door model that is used in

conjunction and vice versa. When all of the doors have been

added, compile and test the level. Make sure that all the

doors in the level open smoothly.

At this point, stage 3 of the design process is

complete. All the structure has been built and the level is

ready to have pawns and weapons added to it. The next

chapters will discuss adding weapons, creating pawns and

writing pawn scripts. Everything that is needed, to get through

stage 4 of the design process, which is the construction of the

actor media. Then this media will be added to the level, to

complete stage 5.

For the next steps in the design process, the World

Editors will not always be needed. To make things a bit more

efficient, run the RF INI Editor and set the Starting Level to,

escape.bsp. This makes the Space Escape Demo, the default

level when RF is executed. To make things easier, it will be a

good idea to Drag & Drop a RF icon into the Windows Task

Bar.

3D Games with Reality Factory

72

Creating Actor FIles

73

3D models made using third party software, are used

with Reality Factory in a number of ways. They can be

imported as MAP or 3DT files and be used as actual game

geometry, or they can be added as static entities that add to

the scenery. Most commonly, 3D models are added to a

game as either an Attribute, a Static Entity or a Pawn. In

these instances, the model must be added to the game as an

Actor file. This chapter will discuss how 3D models are

converted into ACT files.

Before continuing with the chapter, it is important to

take a look at the necessary, third party software that will be

required for the conversions. All of these tools are not

required. The software that will be required, depends on the

method of conversion that is chosen. These methods will be

discussed later in the chapter.

• Anim8or - This is a freeware 3D modelling tool that is

incredibly easy to use. A complete amateur can sit down

with the manual and learn how to make 3d meshes from

simple geometries. It can export objects to 3DS format,

but can not export animations. It is not at all a requirement

to make RF actors, but is very easy to use and good for

complete beginners to start learning about basic 3D

modelling.

3D Games with Reality Factory

74

• GMAX - This is the scaled down and freeware version of

3D Studio Max, which is specifically designed for game

builders. It is complex but extremely powerful. It is well

worth taking the time to learn how to use it. In regards to

making RF act files, it is one of the few programs which

can be used entirely on it’s own, without requiring any

other software, except the plug-in scripts.

• Milkshape3D - Although Milkshape 3D is not freeware,

($20) it is also can create models and animations for use

with RF, without needing any other third party tools.

Milkshape 3D can make models, animations and export

them to a format that is ready for Actor Studio. Using

Milkshape is one of the most reliable, fastest and versatile

means of building models for RF. Milkshape3D is also

very easy to use and there are numerous tutorials

dedicated to using it.

• LithUnwrap - Now commercially sold under the name

Ultimate Unwrap, this software is still available as

freeware. It is a very powerful tool that should definitely be

in any modelers toolbox. It can be used for conversions of

formats, skinning models and polygon optimization to

name only the most common features. It is available at the

RF site as well as a few other places.

• TrueSpace 3.2 - Although Caligari Truespace is a

commercial product, version 3.2 is available as a free

download. It can be used to make 3D meshes which can

then be used with Truegene to quickly create RF actors.

Using this combination is fast and efficient means of

creating RF actors.

• TrueGene - This tool is used to convert Truespace COB

files into ACT files. It is available at a number of web

pages including the main RF site.

Creating Actor FIles

75

• 3DS23DT - This is a tool which converts 3DS models into

3DT files.

• GMAX Scripts - The latest NFO and KEY exporter scripts

for GMAX is required to create animations and meshes

using only GMAX or 3D Studio MAX.

Parts of an Actor File

The contents of an act file can be viewed using the RF

tool, VFS Explorer. Under examination it seems that the file is

a compilation of MOT files and a BDY file. The BDY or Body

file, which can also be examined with VFS Explorer, is what

contains the materials of the actor, the mesh and the skeleton

of the act file. The MOT or Motion files, contain the skeleton

animation data. RF Actor Studio takes these formats and

combines them into an act file. It can also convert NFO and

KEY files, which are made by MAX and GMAX. These are the

equivalent to BDY and MOT files.

Conversion Methods

There are basically three methods to create ACT files

for RF. They use a combination of the software mentioned

above and the RF Actor Studio software. This next section will

detail these three methods and examine the strengths and

limitations of each.

Using Milkshape 3D

As mentioned previously, Milkshape is the single tool

that can be used all by itself, requiring nothing else except the

RF Actor Studio. The formats that are created with Milkshape

3D Games with Reality Factory

76

are the BDY format for meshes, and the MOT format for

animations. This is handled through the Export options within

Milkshape. These formats, are then imported into Actor Studio.

Because Milkshape can not import 3D Studio files, it will be

necessary to convert the 3DS mesh to the Milkshape MS3D

format by using LithUnwrap. Using Milkshape is the only

guarantied approach to getting an animated actor into RF.

The basic process is to model the mesh and then create

the skeleton for it. The vertices of the mesh are then assigned to

the specific joints of the skeleton. Every vertex must be assigned

to a joint or the export process will fail. The mesh must then be

assigned a material, which must be an 8 bit or 24 bit bitmap.

Other wise, the texture will not be recognized by the Milkshape

export tool and the material will not be added to the BDY file.

Once the mesh has had it’s bones assigned and the materials

mapped to it, it can be converted to a BDY file by selecting

Export - Genesis3D BDY. This will ask for a name to save the

file as and then create the BDY file.

Animations should not all be added to the same model.

The original MS3D file should be saved with a new name and a

single animation is used for each new file. Otherwise, when the

animation is exported, it will be an animation of all of them

combined. Once the file has been animated, the animation is

exported to MOT by selecting, Export - Genesis3D MOT. Be

sure that the Milkshape Anim button, is not selected while

exporting the MOT file.

Using Truespace 1.0 and Truegene

This is the only method that does not require the RF

Actor Studio. It entails using Truegene to convert a Truespace

Creating Actor FIles

77

COB file into an ACT file. It is as simple as that. It works

similar to the RF Actor Studio in the sense that a ‘body file’

must be selected and animation files are then added to it. The

COB files are converted to BDY and MOT files and then an

actor file is assembled from them. Truespace can also import

3DS files along with their animation data. This makes using

this method, to be a viable means of converting commercially

purchased models into ACT files for RF. COB and 3DS files,

are two of the most commonly found formats, used for both

freeware and commercial game models. Some models will

require some ‘post processing’ to be exported properly, so it is

important to test the models, before any commercial models

that may be converted in this manner are purchased.

Using GMAX with NFO and KEY Exporters

This method is the only method that uses completely

freeware tools. It also can produce the best results in many

instances. The procedure requires GMAX and the NFO and

KEY exporter scripts. It is important to read the instructions

that come with the exporter scripts. The docs state, that the

meshes must be set as editable using the Modifiers. This is

an important point to keep in mind. The scripts are used, by

running them with the GMAX Script Listener Window open.

When the script finishes running, the generated text is copied

from the window and then saved as either an NFO or KEY

file. These formats are then used by ACTOR studio, to create

an ACT file.

Once the proper modifiers have been applied to the

model, the export process entails opening the Script Listener

Window and executing the NFO and KEY export scripts. As

each script is executed, the script listener window will be

populated with the necessary data. This data is then copied to

3D Games with Reality Factory

78

a text file and saved with the extension NFO. Results of the

KEY script, are saved with the extension KEY. In many

instances, the file will be larger then what is capable of being

handled by NotePad, so it is best to copy the contents of the

Script Listener window into WordPad. One thing to keep in

mind is that the Script Listener window, can not copy its entire

contents for a single copy and paste. It must be copied in

‘chunks’ and added to WordPad piece by piece. Once again,

once the data has been copied over, the file is saved with the

NFO or KEY extension, as determined by which script was

executed.

Using the RF Actor Studio

RF Actor Studio can create animated or static actors,

from BDY and MOT formats or NFO and KEY formats. There

are a few requirements that must be considered before using

Actor Studio. First off, the textures used by the model must

have dimensions that are a power of 2, and must be no larger

then 256 x 256 pixels. Secondly, the names of the animations

that will be used by RF, are the names of the actual MOT files

used in the actors, and not the names given to them when

compiled. This will be looked at more carefully during this

example. Below is a step by step example of using the RF

Actor Studio.

Step 1 - Prepare the BDY and MOT file using Milkshape3D or

prepare the NFO and KEY files using GMAX. Be sure that the

texture dimensions are no bigger then 256 x 256 and are a

power of 2.

Creating Actor FIles

79

Step 2 - Place of the media into its own working directory.

This will let you organize your models and make changes to

them easily. For this example, make a new folder and name it

Model_One. Place the both the BDY / MOT or NFO / KEY

files and the textures, into this folder.

Step 3 - Run Actor Studio and select Project - New. Browse

to the folder that contains the media and save the new project

under the name model1.apj. Check the box marked Use

Working Directory and select OK. By default, the resulting

ACT file will be named the same as the project. The ACT file

name can be changed under the Tab labeled Target.

Step 4 - Click the Tab labeled Body. At this point the program

will require the path to the BDY or NFO file which will be used.

Select which format which is being used and browse for the

file. The option to use a MAX file will not be examined here.

What it does is launch 3D Studio MAX and then automatically

run the NFO and KEY exporters.

Step 5 - Select the Motions Tab. This is where the animations

will be added to the ACT file. This portion of the project will

require the KEY or MOT files that makes up the animation

data. To add an animation, follow these steps:

• Select the format you will be adding in the format frame.

• Select the Add button.

• Enter the name of the animation in the box prompted and

hit OK. The name that is entered here is not used by RF.

It instead uses the name of the actual MOT or KEY file,

without the extension.

• To add the file, first select the newly added entry, then

3D Games with Reality Factory

80

select the button labeled Browse, to find the animation.

• Repeat these steps for each animation file.

Step 6 - Now that the body and animation files have been

specified, the actor can be compiled. Select the Build button

in the bottom right corner. This will compile the actor. If all

goes well, Actor Studio will return with the response saying,

'Build Successful.' Other wise it will return, 'Build Failed.'

Troubleshooting the Build

If the build failed then double check the following:

• All media is in the working directory.

• Use Working Directory is checked.

• The textures are not bigger then 256 x 256 and are a

power of 2. ie.. 32 x 32, 128 x 128.

• Be sure that he NFO and KEY files are not corrupt or

incorrectly made.

• The materials were in the same directory as the BDY file

when exported from Milkshape.

Viewing the Actor

To view the completed actor is a pretty straight

forward process. Just run Actor Viewer, select your video

driver (usually D3D) and then open the ACT file. The

animations can be selected from the animation list. You can

also view the animations running at different speeds. If an

actor fails to load in the RF Actor Viewer then it will most likely

fail to load in RF.

Bringing Actors Into RF

81

The last chapter examined the different ways that an

actor file can be made for RF. This chapter will examine the

different entities that use actor files. Be sure to place your

actor files in the media/actors directory. Actor files are used

for Pawns, Static Entities and Attribute entities. Each will be

examined more closely with an example.

Adding Actor Entities

When one of the above mentioned entities are to be

placed in the world using one of the World Editors, it’s

position will be the bottom point of the actor. In order for the

actor to not have to ‘fall into place’, the entity should be

position exactly at ground level to where it will stand.

However, it is very important to not have the entity within a

brush, because it may cause strange effects to take place

with the brush and the entity.

StaticEntityProxy

The StaticEntityProxy is used to bring an actor file into

the BSP and animate it or interact with it if necessary. The

entity is capable of triggering other entities and sounds, as

well as being able to cause damage to the player and at the

3D Games with Reality Factory

82

same time be damaged by the player. A StaticEntityProxy can

be pushed around by the player, animate as necessary and

also remove itself when destroyed. It is one of the most

versatile entities RF has to offer and also one of the easiest

to add to a level. The only required entry is szActorFile. This

entry requires the file name of the actor file in the

media\actors directory. For example, if an actor file named

plant.act is to be used, then the szActorFile entry would be,

plant.act. Once again, this file must be located in the

media\actors directory. If a directory named plants was

added to the media\actors directory, then the szActorFile

entry would need to be, plants\plant1.act. This will look for a

file named plant1.act, in the media\actors\plants directory.

The next thing to consider is the bounding box size of

the actor. This is handled using the BoxSize entry, in the

entity properties. The box size is the 'real' area of interaction

with the player. The player can not enter this area and will

trigger any specified actions when contacting it. If this is not

set, then the bounding box will be as large as the actor.

Finally there is the ScaleFactor entry. This is also

important to consider, because it scales the actor outwards

from the center. This is obvious enough, but it is important to

remember that the placement in the world editor, must

change in accordance to the scale difference. The scale and

bounding box, are the two variables which must be adjusted

for the actor to properly interact within the world. Bounding

box dimensions can be viewed in game, by selecting the

DEBUG option from the RF demo menu and then checking

the Show Entity Bounding Box option. This will display the

bounding box of all entity actors in the game.

Bringing Actors Into RF

83

Attribute Entity

The Attribute Entity has a very specific purpose in RF

and that is to allow for a model that when contacted by the

player, will increase an attribute value. For example, a model

of a medical box that increases the players health. The

Attribute entity is very versatile. It can re-spawn itself after a

specified time and can have its presence in the level,

controlled by Logic Gate or Trigger entity. It can act like a

trigger and even create a Callback when it is contacted with.

This feature will be used in the example here, to display a

message when the attribute is picked up. Animation is not a

feature of this entity as of version 070, but it may be added by

RF developers in a future version.

 An Attribute entity can be placed into a world by

simply specifying the szActorFile entry, but in order for the

player to interact with it, the player.ini file will require the

appropriate attribute definition. Also, the attribute amount can

not be already at its maximum or the player will not be able to

‘pick it up’. For this example, the attribute used will be health.

Edit the player.ini file in NotePad and locate the entry labeled

[health]. Set the initial amount to be 50. It should look like this.

[health]

initial = 50

low = 0

high = 100

Save the file and exit NotePad. This will ensure that

the player will be able to pick up the attribute for this example.

3D Games with Reality Factory

84

Next is a step by step example of adding an attribute to a

level and then displaying a message when it is picked up.

Step 1 - Start up a new level in RfEdit or World Editor 2.

Create a hollow cube to be the world boundary, then add a

PlayerStart entity and PlayerSetup entity. Select an actor file

to be used as the attribute. By default the szActor file uses

skull.act. This file did not come with the RF07 media package.

If you do not have an actor file to use, then just choose the

Ernie player actor.

Step 2 - Add an Attribute entity to the level and place the

name of the actor file in the szActorFile entry. In the

AttributeName entry type, health. In the AttributeAmount

entry, type 10. What this does is set the entity to add 10

health points to the player when it is collided with. Position the

Attribute entity 8 texels above the ground in the level.

Step 3 - At this point, when the level is compiled, the player

will be able to walk over the attribute and pick it up. It will

disappear and the players health will increase by 10 points.

But it needs something more to spruce things up a bit. A

message display, will be added to inform the player that they

picked up the attribute. The Attribute entity uses a Callback,

when the player collides with it. This Callback can be

recognized by a LogicGate entity and used to trigger a

message or other event. To the Attribute entity properties,

add the name Attrib1 in the szEntityName entry. Now add a

LogicGate entity and a Message entity to the level.

Step 4 - Edit the LogicGate properties to set the szEntity

name to LG1 and the TriggerName entry to Attrib1. Set the

Bringing Actors Into RF

85

Type to be 6. This will define the logic gate as a callback

trigger. Now edit the Message entity and set the TriggerName

entry to LG1. Then define the DisplayType entry as Static and

the Message entry as GotHealth. The value Static, refers to

the type of message as defined in message.ini. It is important

to check and see that this is correct. Prior to RF07, the

message type was defined as Normal.

Step 5 - All that is left to do is define the message GotHealth

in the message.txt file found within the install folder. Open the

message.txt (not message.ini) file using a text editor and

add the following:

[GotHealth]

Picked Up Health

Now compile and preview the level. If all went well,

then when the player walks over the attribute, it will disappear

and display the message, 'Picked Up Health.' Ten health

points should also be added to the players health level. To

make the attribute reappear, set its ReSpawn entry to true

and then set the Delay entry to the number of seconds

between spawning. This will re-spawn the attribute and allow

the player to continually pick it up, until no more health can be

added to the players health levels.

Adding Pawns

The Pawn entity is the most versatile entity found

within RF. This is because it is controllable through the RF

Scripting method. This is thoroughly explained, in the

3D Games with Reality Factory

86

chapters on pawn scripting. Pawns are the only entities that

do not simply use an szActorFile entry, but instead require a

pre-defined Pawn Type. These are defined within the pawn.ini

file. Below is the pawn definition found in the default pawn.ini

that comes with RF07. It defines the flying monster seen in

the default demo. Take a quick look at the definition.

[Flock]

actorname = pawn\flock.act

actorrotation = 0 180 0

actorscale = 1

fillcolor = 255 255 255

ambientcolor = 255 255 255

subjecttogravity = false

boundingboxanimation = Idle

This defines a pawn type named Flock. Examining the

entries, it seems that the actor file used is named flock.act

and the scale is set to 1, the original size. This actor file is

located in the media\actors\pawn directory. The pawn is not

subject to gravity, so it will not fall within the level. The least

important entry is boundingboxanimation. The bounding box

size of the pawn, can be defined in the pawn script using the

BoxWidth() command. This entry can be left out when a new

pawn is defined.

With the pawn properly defined in the pawn.ini file, it is

added to a level using the Pawn entity. Add a pawn entity to

the simple level built from the attribute example and edit the

following three properties.

• ActorType - This requires the name of the pawn definition

Bringing Actors Into RF

87

in the pawn.ini file. For this example, type Flock in this

entry.

• ScriptName - This is the name of the script file which will

be used by the pawn. The entry is case sensitive and

requires the file extension as well. If the pawn entity does

not find the script, then the pawn will appear in the level

and play its default animation. For this example, type

null.s within the entry. It will not find the script and only

display the pawn in the level.

• SpawnOrder - When an actual script is used, the entity

will look for the first Order to execute. This is described in

detail in the scripting chapter. Common practice is to just

use Spawn as this entry and name the first script order

Spawn as well. This entry is also case sensitive.

After altering these entries, compile the level and

preview it. The flock actor should appear where the entity was

positioned. It should simply be playing its idle animation. This

example only showed how to get the actual pawn type within

the level. Very little can go wrong, but if the pawn does not

show up in the level, then check the following.

• Can RF find the specified actor file? If RF can not then it

will crash and log an error saying that it could not find the

file, specifying the path where it looked for it.

• Is the PawnType entry correct? This entry is case

sensitive and must be spelled exactly as it is in the

pawn.ini file.

• Is there an entry in the SpawnTrigger field? If so, then

remove it. The pawn will only spawn if the Trigger in this

entry goes high.

• Is the pawn positioned inside a brush or at a height that is

3D Games with Reality Factory

88

not visible by the player?

More About Pawns

As it was just stated, pawns are the most versatile

entity in RF. Below is a list of tasks that pawns can perform

and be used for.

• Player Enemies - A shooting combat a.i. for a pawn is built

right into the RF scripting system, making it very easy to

add enemies that will attack the player.

• Player Helpers and Guides - Pawns can also act to help

the player and even attack other enemy pawns.

• Conversation Screens - Pawns can generate

conversations that offer logical choices to the player and

the react accordingly.

• Moving Cameras - When combined with a Fixed Camera

Entity, a pawn can be used to create in game movies and

cut scenes.

• Attribute Modifiers - Pawns can modify player attributes

and use this feature to create timers and score keeping

systems.

• Event Manager - A pawn can be used to control events

throughout an entire level and do so at specified times.

Adding First Person Weapons

89

The RF weapons manager is simple and very

versatile, allowing almost any weapon model to be quickly

and easily added to any RF game. An already modelled

weapon can be brought into RF in less then 30 minutes. This

chapter goes through the process of creating a First Person

weapons model into RF. The model used in the example, is a

commercial model of an MP5 submachine gun, but this

method can be applied to any similar model. Tools required

for this example include, Milkshape and Lithunwrap.

Converting the Model

The first step is to create a suitable BDY file, that can

be used by RF Actor Studio, to create the act file. Note, that

these same methods can be applied using GMAX / Max and

the NFO exporters. The MP5 model was originally in 3DS

format. It was opened with LithUnwrap and optimized using

the Optimize Model option found under the Tools menu. It

was then saved as an MS3D file. The file is then opened in

Milkshape and the model is centered at 0,0,0. This is a very

important step, which makes the final positioning process

much more efficient. It ensures that the model starts at a

position, that has no offset from the player position. Also be

sure to scale the model to a size that is appropriate for the

engine. Some commercial models are quite small and need to

3D Games with Reality Factory

90

be scaled up just a bit, in order to be properly worked on in

Milkshape.

Next step is to add a root joint and a joint that will be

the launch point for the projectile. Assign all of the models

vertices to the root joint. Below is a screen shot of the MP5

model with the joints added to it.

Note that the root joint is as 0,0,0 and the two other

joints are set at either end of the weapon. The second joint to

the right, is protruding just past the edge of the barrel. Write

down the name of this joint, as it will be referred to later on,

when defining the projectile launch point for the weapon. Be

sure that all vertices are assigned to the root joint and then

export the model as a BDY file.

First Person Weapon Animations

As it was stated in a previous chapter, a first person

view requires only six animations for each weapon. However,

the same animation can be used for many actions, so it is

only necessary to create a minimum of two animations per

weapon. These animations are Arm and Idle. Here is the full

list of animations, used by a first person weapon.

Adding First Person Weapons

91

• Idle - For this example, the idle animation will be a single

keyframe of the weapon position at 0,0,0. This same

animation will be used for Shoot, Walk and Empty.

• Arm - The arming animation, is what is displayed when

the player selects this weapon. It can be made from a

minimum of two keyframes. The first keyframe having the

weapon in a holster position and the second keyframe

having the weapon in the Idle position. (0,0,0)

• Shoot - The same single keyframe animation that was

used for the Idle animation, is used for Shoot, Walk and

Empty. This has the effect of keeping the weapon still at

all times. This is the simplest method for adding a

weapon, but the effect can be enhanced by adding a

muzzle flash, ejecting shells and the correct sfx.

• Walk - The same single keyframe animation used for Idle

can be used for Walk.

• Reload - RF has two options for reloading the weapon.

Two animations can be defined, one for when the weapon

automatically reloads and another for when the player

selects the reload button. In this example, the Arm

animation is also used to create the Reload animations.

• Empty - Again, the Idle animation will be used for empty.

A sound effect will let the player know that the weapon is

out of ammo.

When exporting these animations, be sure to export

an original MOT for each animation. For example, the single

keyframe animation of the weapon at 0,0,0 is exported as

Idle, Shoot, Walk and Empty, while the arming animation is

exported as Arm and Reload.

With the BDY and MOT files exported from Milkshape,

The MP5 model as an Act

file viewed in the RF Actor

Studio. When the game is

complete, the weapon is re-

modelled, removing any

polygons that are not seen

by the player during the

course of the game. This is

done to help maximize the

rendering efficiency.

3D Games with Reality Factory

92

the model can then be assembled using the RF Actor Studio.

Below is a screenshot of the RF Actor Studio at the Motions

Tab. Note the small number of animations that are required.

Keep in mind that the names specified, are not the names of

the animations that will be used by the RF ini files. RF uses

the name of the actual MOT file, that is contained within the

MOT file itself. Before going on to specifying the weapon

definitions, be sure to know the names of the animations and

the name of the joint at the tip of the barrel. If it was the

second joint added with Milkshape, then by default it will be

named, joint2.

With the actor compiled, copy it to the media\actors

directory. Now that a modeled weapon is available as an act

file with the necessary motions, it can be defined as a

weapon and used within a game.

Adding Weapon Definitions

Act files which are to be used in RF as weapons, are

defined in the weapon.ini file. Double click the weapon.ini file

in the RF install folder to view it in NotePad. Scroll down to

the section that has the heading, [9mmAR]. This is the

weapon definition for the 9mm pistol used in the RF demo.

Adding First Person Weapons

93

Highlight all of the definition data, then copy and paste it at

the end of the file. Modify the newly pasted entry as follows.

The parts in bold are the altered entries.

[MP5]
type = weapon
slot = 5
firerate = 0.05
catagory = projectile
projectile = pistolbullet
attribute = health
ammunition = pistolbullet
ammopershot = 1
shotpermagazine = 30
loosemag = true
worksunderwater = true
attacksound = weapon\bulletfire.wav
reloadsound = weapon\reload3.wav
emptysound = weapon\click.wav
muzzleflash = PMuzzleFlash
;
; 1st person
;
viewactor = MP5.act
viewfillcolor = 128 128 128
viewambientcolor = 128 128 128
viewrotation = 0 0 0
viewoffset = 0 0 0
viewscale = 1
viewlaunchoffset = 0 0 0
viewanimspeed = 1
viewarmanim = arm
viewidleanim = idle
viewattackanim = shoot
viewwalkanim = walk
viewreloadanim = arm
viewkeyreloadanim = arm
viewattackemptyanim = shoot
viewlaunchbone = joint2
crosshair = crosshairs\pistol.bmp
crosshairalpha = crosshairs\a_pistol.bmp
crosshairfixed = true
recoilamount = 0
recoildecay = 0
;
; 3rd person

3D Games with Reality Factory

94

;
playeractor = mp5.act
playerfillcolor = 128 128 128
playerambientcolor = 128 128 128
playerrotation = 0 180 0
playerscale = 1
playerlaunchoffset = 0 0 10
playerbone = joint2

By altering these entries, a new projectile weapon has

been defined for use within RF. Examining the changes, it

seems that the new weapon is named MP5. The offset and

position data has been reset to 0 and will be added in the

next step. The animation names have also been changed, to

match those for the new model. Weapon slot 5, is defined as

the slot location. This weapon can be selected by pressing

the 6 key. The viewlaunchbone setting defines the projectile

launch point and is the name of the joint that protrudes from

the barrel.

The ammunition used by the weapon is defined to be

pistolbullet. This is a projectile definition, also defined in the

weapon.ini file. For simplicity sake, it will be kept for the MP5.

Before being able load the MP5 in RF though, one more

modification must be made to the player.ini file. The player.ini

file defines the attributes of the player. An MP5 attribute will

have to be added and the initial value set to 1. Add the

following to player.ini file.

[MP5]

initial=1

low=0

high=1

This will start the player off, with an MP5 already

Adding First Person Weapons

95

accessible to them. The weapon can be selected by pressing

the 6 key. With the definitions in place, the final step is to

properly position the weapon in relation to the player. This is

performed within an RF demo level.

Positioning the Weapon

In order to properly position a weapon in RF, a system

of keys is used to orient the actor. While the actor is being

rotated and positioned, it displays this information at the

bottom right of the screen. This information is written down

and then entered into the weapon.ini file. If the demo level

described in this book has not been prepared, then quickly

run the World Editor and create a small world from the default

hollow cube. Add a playerstart entity, a playersetup entity and

then save / compile it as a test level. This level will be used to

position the weapon.

First run the RF INI Editor Tool and select the check

box marked, Weapon Positioning On. This will activate the

weapon positioning keys, which is the number pad of the

keyboard. Once again, if the demo level has not been

prepared, then set the Start Level option in the RF INI Editor,

to run the test level that has been quickly assembled for this.

Save the ini file and exit the editor.

The next step happens within the game itself, so run

Reality Factory and go to the Options Menu. Select the

Debug menu and check the box marked, Debug Info. Now go

to the Controls Menu, select Advanced and check the box

marked Crosshair. This will display all the data that is needed,

to properly position a weapon and turn on the game crosshair.

3D Games with Reality Factory

96

Select the weapon by pressing 6. In most instances the

weapon will be in a position that is out of the players view. It is

offset and rotated, by using the number pad of the keyboard.

The data in the bottom left of the screen, is the weapons

current scale and position. The diagram above shows the

keys used to move and rotate the weapons position. The 0

key, is a shift that toggles rotation. For example, to move the

weapon up, the 4 key is used. To rotate the weapon counter

clockwise, 0 is held down while the 1 key is pressed.

In most cases, the weapon will have to have the Y

rotation set to 90. This is because the weapons is sometimes

accidentally modelled side ways, in the front viewing window

of the modeling program used to make it. Rotate the weapon

90 degrees if necessary and start to reduce the scale using

the 9 and 6 keys. Continue to position the weapon until it suits

the game view. On the next page is a screenshot of the MP5

Adding First Person Weapons

97

in a game. Notice that the Ghost Ring Site of the weapon, is

lined up with the location of the crosshair. This lets the player

use the actual crosshair of the weapon. When the weapon

has been positioned, write down the offset and rotation data.

To make the changes permanent, open the weapon.ini

file and add the position data to the following lines. Here is

the position data for the MP5.

viewrotation = 4.5 -88 -2

viewoffset = -1.0 -4.4 12.5

viewscale = 0.35

Save the weapon.ini file and run RF again. This time

when the weapon is selected, it will be in the position that is

was set to. When the weapon fires off 30 rounds it will

automatically reload and play the arm animation when it does.

There should also be a slight recoil every time it fires. The

amount of the recoil will have to do with the scale of the

weapon and may need some adjusting to look right.

The process that was outlined, is similar for all first

person weapons. Melee weapons will require two animations

3D Games with Reality Factory

98

for attacking and RF will switch between them randomly. For

the most part however, almost any model can be brought into

RF and used as a projectile weapon.

Creating Enemy Pawns

99

Right along side weapons, enemies are an integral

part of many RF games. They are responsible for bringing the

level to life, so to speak. This chapter does not directly

discuss modelling methods, since that is a preference for the

reader. The focus is more towards what animations will be

required and what to consider when creating the model.

Animations for enemy pawns can be added in one of

two ways. Bones can be assigned to a mesh and then

animated, or a mesh can be designed around an already

animated skeleton. Which method to use, depends on the

tools and the media that is available.

Enemy Animations

Before continuing, it is important to understand what

the basic animations required to create an enemy are. Below

is a minimum list of animations that should be found within an

enemy pawn.

• Idle

• Walk

• Shoot

• Die

3D Games with Reality Factory

100

This is the absolute minimum that a pawn will need to

interact with the player as an enemy. Transitional animations

from one animation to another, can be created by the engine

using the script command, BlendToAnimation(). However, to

add variety to the actions of the enemies in the level, it is a

good idea to have multiples of the same animation. For

example, a pawn should at least have two or three die

animations. The more animations that a pawn has to perform

the same task, the more varied the actions of the pawns will

be. Of course, the random selection of these animations,

must be written into the script. A more advanced set of

animations would include:

• Idle 1, 2

• Shoot

• Melee 1, 2

• Turn Left

• Turn Right

• Walk

• Walk and Shoot

• Pain 1, 2

• Die 1, 2, 3

This is a more complete set of animations, that can

cover a wider range of events and actions. If multiple pawns

are in view at once, then they will have varied actions making

them seem more like ‘individuals’. With this set of animations,

the pawn is capable of performing the following tasks:

• Stand ready

• Fire at the player while standing still

• Fire at the player while walking towards the player.

• Attack the player with a melee combination.

Creating Enemy Pawns

101

• Follow a Script Point Path patrolling for the player.

• Display that it has been injured.

When creating these animations, remember that each

must be exported as a unique file and not as a large single

file of combined animations.

Using Milkshape

Many meshes are available on the Internet as royalty

free downloads, for individuals to use in the creation of their

games. Milkshape3D is very easy to use and with a few other

programs it can easily create an animated model from a ready

mesh. However, because of a few issues revolving the

animation system it uses, there are a few considerations that

must be addressed.

Many models available on the Internet are available in

3DS format. However, Milkshape does not import 3DS

models. This is overcome by using the freeware program

LithUnwrap. A 3DS file can be opened with LithUnwrap and

then saved in MS3D format. Be sure that is saved to the

same folder, that contains the materials.

With the file now in Milkshape, it requires the skeleton

to be added and the vertices assigned to each joint. The first

points to consider is, the position of the root bone above the

ground plane. The feet of the mesh must be at Y=0 and it

should be moved into position, before any joints are added to

it. It is also important to remember that all vertices must be

assigned, for a BDY file to be successfully exported. This can

be taken care of by selecting the root joint and then assigning

3D Games with Reality Factory

102

every vertex to this joint, before any other vertex assigning.

This will ensure that no vertices are missed.

Once the skeleton has been assigned to the mesh, the

file should be saved and the BDY file exported. This MS3D

file will be opened, each time a new animation needs to be

created. The next step, is to create the MOT animations.

Each animation should be saved as a unique file. Save the

original MS3D file under another name and begin to create

the animation. When a new animation is started, it should be

from the MS3D of the non-animated skeleton. Each animation

is exported as a unique MOT file.

Milkshape Seamless Animations

When creating animations with Milkshape, the most

important factor to consider is the duration of the animation.

Milkshape can not create an animation that is less then 1

second. One keyframe in Milkshape, is one second long. This

means that in many instances, an animation will have to be

made out to last many seconds and then scaled down using

the Milkshape Scale Animation tool. It is important to consider

this when scripting the pawn, since it is the animation duration

that will control many factors in the script. More about this in

the chapter on pawn scripting.

Milkshape also can not create a completely seamless

animation. When a MOT is exported from Milkshape, an extra

keyframe is placed between the end of the last frame and the

first frame. This is keyframe 0 and can not be edited with the

Milkshape animation system. In order to create a seamless

animation using Milkshape, the animation must be manually

Creating Enemy Pawns

103

edited to start at frame 0 and not frame 1. The following is an

example of how to accomplish this, using WordPad and the

Scale Animation Tool.

Assume that a model has been animated to walk,

using Milkshape. It has 6 keyframes, with number 1 and 6

being exactly the same, to simulate a seamless motion. At

this point, the exported animation will last 6 seconds and have

a 1 second ‘pause’ between the motion. In order to achieve

the right effect in the game though, the animation must be

made to last only 1 second and the pause between the start

and end of the motion, must be removed. First the animation

is scaled down to 1 frame with the Scale Animation tool. Then

it is exported as a Milkshape3D ASCII file, to create an

editable file with the extension, txt. The ASCII file is opened

and edited using WordPad, in order to remove the unwanted

frame between the end and start frames.

Start by searching for the word, Bones: . CTRL-F will

open up the Find Text dialog box. The cursor should end up

at a point in the file, that then displays the text similar to the

following:

Bones: 18
"joint1"
""
24 0.771498 54.517002 -10.333334 0.000000 0.000000
0.000000
6
0.166667 0.000000 0.000000 0.000000
0.333333 0.000000 0.000000 0.000000
0.500000 0.000000 6.000000 -1.500000
0.666667 0.000000 0.000000 0.000000
0.833333 0.000000 8.000000 0.000000
1.000000 0.000000 0.000000 0.000000
6
0.166667 0.000000 0.000000 0.000000

3D Games with Reality Factory

104

0.333333 0.000000 0.000000 0.000000
0.500000 0.000000 0.000000 0.000000
0.666667 0.000000 0.000000 0.000000
0.833333 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000

This information is present for each bone in the model.

It is motion data for each keyframe. The numbers that are in

bold print, represent the start times for each keyframe. The

data above shows that the animation sets the start of the first

keyframe at 0.166667 seconds and lasts for 1.0 second. It

must be modified to start at 0.00000 in order to remove the

0.16 second time lag, before the start of the first keyframe.

Below is the same data, now modified to be seamless. This

was performed for each section of data that represents each

bone. Be very careful when editing the ASCII file, since any

subtle changes in the wrong spot can effect the entire model.

Bones: 18
"joint1"
""
24 0.771498 54.517002 -10.333334 0.000000 0.000000
0.000000
6
0.000000 0.000000 0.000000 0.000000
0.200000 0.000000 0.000000 0.000000
0.400000 0.000000 6.000000 -1.500000
0.600000 0.000000 0.000000 0.000000
0.800000 0.000000 8.000000 0.000000
1.000000 0.000000 0.000000 0.000000
6
0.000000 0.000000 0.000000 0.000000
0.200000 0.000000 0.000000 0.000000
0.400000 0.000000 0.000000 0.000000
0.600000 0.000000 0.000000 0.000000
0.800000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000

The modified data now starts the animation off at 0.00

seconds, instead of after 0.16 seconds. This file is saved and

imported back into Milkshape by selecting, Import -

Creating Enemy Pawns

105

Milkshape3D ASCII. Play back the animation and examine

the difference. The animation is now seamless. Seeing how

easy it was to correct the data on 6 keyframes, this number is

a good choice for animations in Milkshape, that are meant to

be seamless. This new animation is then exported as a MOT

file.

Using a Pre-Made Skeleton

The above was a brief examination of the steps

involved with animating a mesh in Milkshape. Now the focus

will turn towards using a pre-made skeleton, that can be

extracted from an already animated act file, such as the

player actor. Milkshape3D is capable of decompiling an

already compiled Genesis Act file. By doing so, the skeleton

and the resulting animations, can be used to create a new

actor without the need to create new animations. In this

example, the default Ernie actor will be decompiled and the

skeleton will be used to outline a new mesh.

First begin by creating a new temporary working folder

and copy the Ernie actor to there. Run Milkshape and select,

Tools - Decompile Genesis3D Act. Locate the Ernie actor in

the temporary folder when prompted and select OK. Ernie will

be decompiled in the folder, creating a BDY file and a large

number of MOT files. Each file will have the Prefix Ernie_.

The file with the skeleton is the BDY file. Import this file into

Milkshape by selecting, Import - Genesis3D BDY.

The Ernie mesh and skeleton will be displayed in the

viewing ports. To get to the skeleton, select the faces of the

mesh in Milkshape and delete them so that only the skeleton

3D Games with Reality Factory

106

remains. Next select all the joints of the skeleton and use the

Clear button, found under the Joints Tab in Milkshape. Each

joint must be individually chosen through the Joint Tab, for

the joints to be cleared of any assigned vertices that no

longer exist.

What remains is a skeleton that a mesh can be

modelled around. The basic process involves taking a screen

shot of the skeleton and sketching the mesh outline around it.

This drawing is then used as the backdrop in Milkshape to

create the mesh. Again the vertices are then assigned to the

joints and a new BDY file is exported. An excellent example of

this, is the CS Girl Tutorial, found in chm format at the RFDN.

Once a new BDY file has been created, the BDY and

MOT files can be compiled using the RF Actor Studio. One

thing to keep in mind however, is that although the MOT files

were given the Ernie_ prefix when the file was decompiled,

within each MOT file itself, the name is still as it was without

the Ernie_ prefix. This means that when referring to the

animation name in RF, the name is still the original animation

name and not the new one that starts with Ernie_. This is

because the actual animation name, is stored within the MOT

file itself.

Introduction to Pawn Scripting

107

One of the most powerful features found in Reality

Factory, is the ability to add a scriptable actor entity. In RF,

these entities are named Pawns. The pawn entity is described

in the chapter titled Bringing Actors Into RF. This chapter

introduces the reader to the Pawn Scripting Language and

prepares them to understand the next chapter, which

describes specific script code.

The scripting language in RF, is based on a C style

script handler called Simkin. It will help to read the Simkin

documentation, specifically the description of the included

operators. Aside form the operations which are allowed in

Simkin, RF also has a list of unique commands and functions,

that specifically control aspects of the pawn that is running

the script. One thing to keep in mind before beginning to write

scripts, is that the scripting system is not like many of the

common languages. It is actually quite unique as to how it

works and must be examined carefully before starting to write

scripts.

How to Use Scripts

Pawn scripts are placed in the RF Scripts folder, found

in the root directory. Scripts have the extension .s, but this is

not a mandatory feature. Pawns use the script with the entry

3D Games with Reality Factory

108

in the pawn entity named ScriptName. This entry contains the

name of the script, that the pawn will use. The pawn entity,

also requires an entry that specifies the first Order to be

executed by the pawn. This is specified in the entry named

SpawnOrder.

What is an Order

A pawn script can be regarded as a collection of

functions that each contain a set of specific script commands.

Each one of these functions, is called an Order. Below is an

example of an order.

Spawn[()

{

NewOrder(“Start”);

}]

At this point, all that is important to consider, is that an

order starts with the name of the order and the identifier that

an order is started. In this case, the order is named Spawn.

All commands within an order, must be kept within curly

brackets. An open bracket specifies that start of the command

list and a close bracket specifies the end of the list. The final

square bracket, marks the end of the order. In this particular

example, a command named NewOrder is used. This

command is telling the script, to start another order named

Start.

All scripts, start and end with a curly bracket as well.

An open bracket is the start of the script and a closed bracket

marks the end. Every script file must have the first line as {

Introduction to Pawn Scripting

109

(open bracket) and the last line as, } (close bracket).

High and Low Levels

Pawn scripts have two levels of operation, a low level

and a high level. Commands that are considered Low Level,

will not work when the script is running at a High Level and

vice versa. However, Functions can be called at any level.

The main difference between HL and LL is that a LL

order constantly loops and the looping interval can be

specified at the start of the order. HL order do not loop,

unless they contain a command that specifies the order to

restart and they do not run at specified intervals.

By default, scripts start running in High Level mode.

This means, that the first order can only contain High Level

commands or functions. In order to switch between Low Level

and High Level, a command that instructs the script handler to

switch levels is used. Level switching commands are always

accompanied by the name of an order to switch to. To

examine this further, look over the simple script below, made

up of only two orders.

{

Spawn[()

{

LowLevel(“RunLow”);

}]

RunLow[()

{

self.ThinkTime=0.1;

3D Games with Reality Factory

110

}]

}

The curly brackets in bold, mark the start and end of

the script. The two orders within the script are named Spawn

and RunLow. Below is a breakdown of the script.

One thing that should be pointed out is that the script

handler does not automatically change from HL to LL and

vice versa. It must be instructed to do so and given a new

order that contains the appropriate level commands. If the

{ The first line in every script is an open curly bracket. This

marks the start of the script.

Spawn[() The first order on the script is named Spawn. This is the

name of the order in the pawn entity entry, SpawnOrder.

{ All commands within an order are enclosed within curly

brackets.

LowLevel(“RunLow”); The command instructs the script handler, to switch to Low

Level processing and go to the order named RunLow.

}] All orders end with a curly bracket and a square bracket.

RunLow[() This is the name of the second order in the script. This order

will contain only Low Level Commands.

{ Again, a curly bracket marks the start of the order.

self.ThinkTime=0.1; This command sets the looping interval for this order, to run

every 0.1 seconds or 10 times a second.

}] The order is closed with a curly bracket and a square bracket.

} All scripts are closed with a final close curly bracket.

Introduction to Pawn Scripting

111

script handler is instructed to switch levels, it will only

understand commands for the specific level.

High Level Events vs Low Level Looping

HL processing does not loop an order automatically.

For a HL order to restart itself, it must use the command

RestartOrder() or use the command NewOrder(), to switch to

another HL order. If these commands are not found by the

end of the order, then the script handler idles and waits for an

event to occur. Events are set at a high level and the

parameters that activate the events, are constantly monitored

by the script handler. When the specified event occurs, the

order which the event calls is executed. Events can include a

trigger going high, a flag changing state, the pawn losing

attribute, an enemy being spotted or the end of a pre-defined

time period.

What is very important to know about HL event

handling and the relation to LL handling, is that when the

script handler is instructed to start processing LL commands,

all monitoring of HL event parameters will cease. No events

that were set to run in a previous HL order, will be called if the

script is instructed to run at a low level. However, as soon as

the order switches back to HL command processing, the

events will take place.

Switching Between Orders and Level

There are a few considerations regarding switching

between levels and orders, that are important for the script

3D Games with Reality Factory

112

writer to understand. The first consideration, is that when

switching from a High Level to a Low Level order, all HL

command processing will cease. Now this was stated

previously, but what was not said is that the change will occur

instantly and because the HL commands take place at their

own speed as required, any commands that did not finish

processing will not be called. This can lead to undesirable

results. With this in mind, it is important to allow the switching

from HL to LL, to occur only after all HL commands in the

order have been processed. More about this in the next

chapter.

How to properly switch from LL to HL, also needs a bit

of discussion. The command to go from a low to high is,

HighLevel(). This command accompanied by an order name,

will switch to that order, at the end of the current LL order that

is running. The problem, is that as soon as the script

interpreter encounters the command HighLevel(), it

automatically switches to HL processing. However, the LL

order will still keep running until it is done. This will cause the

script to return an error, stating that it has encountered an

unspecified command. In order to prevent this, the LL

command, return 0 is used. This command tells the script

interpreter, to stop the current script. Below is an example of

a LL order that switches to HL.

RunLow[()

{

self.ThinkTime=0.1;

HighLevel(“Spawn”);

return 0;

}]

Introduction to Pawn Scripting

113

Switching between HL orders is as simple as using the

NewOrder() command. There is not much to worry about,

except to keep in mind that a call to an event, will always

over-ride the currently running HL order.

Low level switching, is accomplished by setting the

self.think variable. This variable instructs which LL order,

should be run at the end of the current LL order. Below is an

example of a LL switch to another LL order, named

RunLowTwo.

RunLow[()

{

self.ThinkTime=0.1;

self.think=”RunLowTwo”;

return 0;

}]

Functions and Global Variables

Some functions and variables can be called at any

time during a script, regardless of the level that it is running

at. An example of this, is the random() function. It can be

used at any time to return a random number, that is between

two specified numbers. An example of a variable that can be

accessed at an level, is the self.DifficultyLevel variable. This

value is the current difficulty level as chosen by the user at

the start of the game. An easy setting has a value of 1, a

normal setting is 2 and a hard setting is 3. This can be used

to give a varying degree of game play to the level enemies.

Note that this option is selected using the RF INI Editor to

check the box marked, Use Difficulty. Next is an example of a

3D Games with Reality Factory

114

pawn script that when run, will switch to a LL order and

display a random number between 1 and 10, once every

second.

{

Spawn[()

{

Console(true);

LowLevel(“ShowRandom”);

}]

ShowRandom[()

{

self.ThinkTime=1;

debug(random(1,10));

}]

}

The HL command Console(true), instructs the script

handler to display the current order and reports errors in the

top left of the screen during the game. The LL command

debug(), is used to display the value of a variable underneath

the console display. In this case, the value is a random

number between 1 and 10, generated by the random()

function.

User Defined Variables

Variables can also be defined by the script writer and

used throughout any order in the script. A variable is declared

at the start of a script before any orders. Below is the same

example script showed previously, but with a numeric value

Introduction to Pawn Scripting

115

and a string value defined.

{

NumVal [10]

Stringval [ShowRandom]

Spawn[()

{

Console(true);

LowLevel(Stringval);

}]

ShowRandom[()

{

self.ThinkTime=1;

debug(Numval);

}]

}

In this example, two variables are defined at the top of

the script. A numeric integer named Numval, is set to 10 and

a string variable named Stringval, is set to contain the string

ShowRandom. Note that the string variable is not in

quotations and that neither variables have a semi-colon at the

end of the line. The string variable, is then used to replace the

name of the order to switch to, using the LowLevel()

command. Notice, that there are no quotes around the

variable name. The numeric value, is displayed on screen

using the debug() command.

3D Games with Reality Factory

116

Common Script Errors

When Console(true) is set as the first line of the

Spawn Order, it will display any script errors in the top left

corner of the screen. However, there will be times when no

error is displayed, but what is expected to happen does not.

Other times, there will be no display shown at all. The errors

are caused by mistakes which the interpreter can not process

or does not seem like a mistake in the script. An example of

this is the following script.

{

Spawn[()

Console(true);

}]

}

Notice that there is no open curly bracket, to mark the

start of the order command sequence for the order. This type

of error confuses the script handler. Another common mistake

is to leave out quotations around strings. The script handler

then treats it as a variable name and not as a string. Below is

an example.

FireProjectile(FireBall,joint12,0,-2,0,health);

This should read:

FireProjectile("FireBall","joint12",0,-2,0,"health");

The script handler would regard FireBall, joint12 and

health as the names of variables and not actual string names.

The console would report an error saying, unidentifed

variable.

Writing Pawn Scripts

117

This chapter discusses methods of controlling a pawn,

to act as an enemy against the player. However, there are

many other uses for pawns, many of which are examined in

chapters that discuss performing specific tasks in RF. For

now, the focus will be on writing a script that can turn the

Robot actor form the media pack, into a player enemy.

Adding the Robot Pawn

The first task is of course, to add the Robot pawn

definitions to the pawn.ini file. Use NotePad to edit the file

and add the following entry.

[Robot]

actorname =android1.act

actorrotation = 0 180 0

actorscale = 0.6

fillcolor = 128 128 128

ambientcolor = 128 128 128

subjecttogravity = true

boundingboxanimation = idle

shadowsize = 64

 Then copy the file named android.act to the RF

media\actors folder. This actor can now be used as a pawn in

3D Games with Reality Factory

118

a level.

For these examples, create a new world with one of

the world editors and start it off with a 1024 x 1024 x 256

hollow cube. Add a playerstart entity, a playersetup entity and

a pawn entity. Set the entries in the pawn entity to match

those in the side bar. Place the pawn at one end of the room

and the player at the other end. Have them facing each other

and position them as close to the floor as possible, without

actually being inside it.

Starting the Script

Run NotePad and save a new file as robot.s, in the RF

Scripts folder. Be sure that the extension is .s and not .txt, by

selecting All Files from the file type setting or by typing the

name in quotations. First add an open curly bracket, a few

carriage returns and then a close curly bracket. The orders for

the script will be added between these two brackets. Now

spawn order is added. Save the script as follows.

{

Spawn[()

{

Console(true);

}]

}

Now this script does nothing but instruct the interpreter

to display the console, but it is a start. The next commands,

will set the necessary parameters to define the pawn as a

player enemy and define the amount of attribute given to the

enemy.

Pawn Entity

• PawnType - Robot

• ScriptName - robot.s

• SpawnOrder - Spawn

Writing Pawn Scripts

119

Creating an Enemy

Add the following commands to the order named

Spawn and then examine the explanation of each below.

These commands instruct the pawn, to regard the player as

an enemy. They only need to be called once during the script.

{

Spawn[()

{

Console(true);

SetFOV(360);

HostilePlayer(true);

HostileSame(false);

HostileDifferent(false);

SetGroup("Enemy");

}]

}

The pawn will now regard the player to be hostile, but

not any other pawns that it sees. When the player comes into

SetFOV(360); This command set the Field Of View for the pawn, to

be 360 degrees. The pawn can see all around.

HostilePlayer(true); This tells the pawn to consider the player to be an

enemy and when seen, target it as one.

HostileSame(false); The pawn is instructed to not consider any other

pawns in the same Group, to be an enemy.

HostileDifferent(false); The pawn is instructed to not consider any other

pawns in a different Group, to be an enemy.

SetGroup("Enemy"); This command sets the name if this pawn Group. In

this case the group is named, Enemy.

3D Games with Reality Factory

120

the field of view of the pawn, the pawn will register the

location of the player, as a location of an enemy.

Adding Pawn Attributes

Pawns can be ‘killed’ by the player, only if given an

Attribute that the player weapon can damage. In order to

define an attribute for the pawn, the command AttributeOrder

is used. Add the following to the script.

{

Spawn[()

{

Console(true);

AttributeOrder("health",20,"Die");

SetFOV(360);

HostilePlayer(true);

HostileSame(false);

HostileDifferent(false);

SetGroup("Enemy");

}]

Die[()

{

Remove(true);

}]

}

At this point, the test level can be compiled and the

robot pawn should appear where positioned. There should be

a display in the top right corner of the screen, saying

something along the lines of, Pawn001 Spawn SetGroup. If

the pawn is attacked by a weapon that removes the attribute

Writing Pawn Scripts

121

named health, then after 20 points have been removed, the

order named Die will be called. The order Die, contains the

command Remove(true). This command removes the pawn

from the level and stops processing that particular pawns

script. The order die will only be called, if the script interpreter

is running at a High Level. If the script is running at a low

level, then the order will not be called when the 20 health

points are removed. A means of detecting a pawn death while

running at Low Level, is examined later in the chapter.

Finding a Target

Before any interacting with a targeted enemy can be

performed with script commands, an enemy must be targeted

by the pawn. This means that the player must come within the

set FOV of the pawn, before it can be interacted with. The

commands used to locate an enemy, include the HL

commands, FindTargetOrder() and AddDistOrder(). This

example will examine the command FindTargetOrder(). Add

the following to the script.

{

Spawn[()

{

Console(true);

AttributeOrder("health",20,"Die");

FindTargetOrder(200,"Alert","health");

SetFOV(360);

HostilePlayer(true);

HostileSame(false);

HostileDifferent(false);

SetGroup("Enemy");

}]

3D Games with Reality Factory

122

Alert[()

{

AnimateStop(“alert”,0,””);

}]

Die[()

{

Remove(true);

}]

}

Here is a breakdown of the FindTargetOrder()

command.

FindTargetOrder(200,"Alert","health");

• 200 - This value sets the distance texels that the pawn

can see. In this case, the player must come within 200

texels to be ‘seen’ by the pawn.

• Alert - This is the name of the Order that will be called

when the target is found. It will only be called while the

script is running at a High Level. The order will only be

called once and then the FindTargetOrder() command

must be used again, in order to re-target the player. Tthis

is only required, if the player goes out of the pawns

defined FOV.

• health - This is the name of the attribute that is targeted

by the pawn. The player must have an attribute named

health, defined in the player.ini file. The pawn will only

target an enemy, that has this attribute specified. Note

that these entries are case sensitive.

Writing Pawn Scripts

123

Examining the breakdown, it seems that the command

used in the script will call an Order named Alert, when an

enemy with the attribute health, comes within 200 texels

inside the pawns FOV.

The new Order named Alert, plays a pawn animation

using the AnimateStop() command. The three parameters

used by the command specify that the pawn is to play an

animation named alert and hold it at the last frame. When the

animation is complete, the script handler is to wait 0 seconds

before going on to the next command when. The empty

quotations, defines no sound file to be played during the

action.

Save the file and compile the test level. Now, when

the player enters within a 200 texel area of the pawn, the

pawn will play the alert animation. This raises the weapon

from the resting position, to the aiming position. The player is

now targeted by the pawn and can be interacted with as an

enemy.

Firing a Projectile

At this point, the pawn can detect the presence of the

player and react accordingly. Now it is time to give the pawn

the ability to attack the player. This will be accomplished using

the High Level command, FireProjectile(). Modify the Alert

Order and add the following order named Attack, to the script

as well.

Alert[()

{

3D Games with Reality Factory

124

AnimateStop(“alert”,0,””);

NewOrder(“Attack”);

}]

Attack[()

{

FireProjectile(“pistolbullet”,”HandR”,0,0,0,”health”,””);

Delay(“stattack”,1,””);

RestartOrder();

}]

The new command added to the Alert Order simply

instructs the script to switch to a new order named Attack.

FireProjectile() The entry pistolbullet defines the projectile to be fired.

This is a projectile defined in the weapon.ini file. HandR is the

name of the joint in the robot actor from which the projectile is

fired from. The values 0,0,0 are an X,Y,Z offset for the point

from which the projectile will fire. The empty quotations would

define a sound that will be played when the projectile is fired.

In this case, no sound is specified. Note that there are a total

of three different versions of this command. This example

uses the High Level method. A later example will examine the

Low Level methods.

Delay() This command, obviously enough, generates a delay

within the script. The parameters specify the animation to

play, the duration of the delay and the empty quotations

define a sound file to be played. In this case, no sound file.

Audio will be added later on. The purpose of this command

within the script is to do two things. One it plays the attack

animation for the correct duration and two, it allows for a firing

delay between shots. When the delay is over, the script runs

the next command, RestartOrder() which simply tells the script

to restart the order and fire again.

Writing Pawn Scripts

125

At this point, when the script is compiled, the robot

actor should be standing idle and when the player

approaches it, the alert animation starts and the robot begins

to fire at the wall. The wall being fired upon, should display

the bullet explosion for the pistol bullet projectile once a

second as the robot fires. If this does not happen, check the

script to make sure that there are not any typos, that may be

causing an error.

Making a Turret

All that is required to make the robot act as a turret

which can fire upon the player when approached, is to make

the robot face the player before it fires. A single command, is

all that is required to do this. Modify the Attack Order to add

the following command.

Attack[()

{

RotateToPlayer(“wattack”, 160, false, ””);

FireProjectile(“pistolbullet”,”HandR”,0,0,0,”health”,””);

Delay(“stattack”,1,””);

RestartOrder();

}]

RotateToPlayer is a very useful command that turns

the Robot into a dangerous player enemy. By adding this

command, the robot will turn to face the player before firing at

it. Here is a breakdown of the parameters.

• wkattack - This is the name of the animation to be played

while the rotation is occurring. In this case the animation is

3D Games with Reality Factory

126

named wkattack.

• 160 - This value defines the speed of the rotation in texels

per second. The higher the value, the faster the rotation.

• false - If this value was set to true, then the robot would

also rotate the pitch to point at the player. However,

because the robot and the player are both standing on the

same plane, there is no need to change the pitch of the

robot as well.

• “” - Once again the empty quotations is where a sound

file would be defined. No sound will be used for the

rotation.

Compile the level and test out the script. The pawn

should be a bit more of a challenge now, actually being able

to kill the player. At all times it will turn to face the player and

fire a projectile. To make it a bit more versatile, a means of

detecting the player range, will allow the robot to only fire

when the player is within a specific range. Add the following

command to the Alert Order and then add another order

named LostTarget.

Alert[()

{

PlayerDistOrder(-256,"LostTarget");

AnimateStop(“alert”,0,””);

NewOrder(“Attack”);

}]

LostTarget[()

{

BlendToAnimation("idle", 1, false,"");

FindTargetOrder(200,"Alert","health");

Writing Pawn Scripts

127

}]

Before examining a breakdown of the commands, it is

important to understand what this does in general. This

addition to the script, will have the pawn stop firing when the

player goes out of range and then return to its idle animation.

It then restarts the checking for a target. Below is a

breakdown of the parameters for the commands,

PlayerDistOrder() and BlendToAnimation().

• -256 - This parameter for PlayerDistOrder, defines the

distance that will trigger the order to be called. In this

instance, it is a negative value. (-256) This means that the

order will only be called when the player moves out of the

specified distance. In this example, the maximum shooting

distance is 256 texels from the center of the pawn.

• LostTarget - This is the name of the order that will be

called when the player moves out of the 256 texel radius

defined in the first parameter.

• idle - The first parameter to the BlendToAnimation

command, defines the final animation that the current

keyframe is blended to. The blending of the two

animations is handled buy RF and can be used to

generate transitional animations.

• 1 - This defines the amount of time in seconds that the

blend will last for. In this instance, the blended animation

will last for 1 second.

• true - When this parameter is set to true, the animation

defined in the first parameter, will play completely, before

going on to the next command. For this example, the

pawn will play the idle animation after the blend.

3D Games with Reality Factory

128

Compile the level and test the additions made to the

script. Now the pawn will only fire at the player, while it is

within 256 texels it. When the player goes out of this range,

the attack animation is blended back to the idle animation and

FindTargetOrder is called again, so that the whole process

can restart itself.

Moving Pawns

A stationary turret is one thing, but to make the pawn

come to life, it needs the gift of motion. There are basically

three ways to move a pawn, using either Script Point paths,

High Level free movement commands or Low Level free

movement commands. For this example, first a High Level

free movement command will be used and then this will be

tied in to a Script Point method. Add the following line to the

order named Attack.

Attack[()

{

RotateToPlayer(“wattack”, 160, false, ””);

FireProjectile(“pistolbullet”,”HandR”,0,0,0,”health”,””);

// Delay(“stattack”,1,””);

MoveForward("wkattack",50,50,"");

RestartOrder();

}]

First, notice the two forward slashes placed in front of

the Delay command. This defines the line to be a comment

and is ignored by the script interpreter. It will be used again

later, but for now it will be replaced by the command

MoveForward(). Here is a breakdown of the parameters.

Writing Pawn Scripts

129

wkattack - This is the animation to loop while the pawn is

traversing the specified distance. In this case it uses an

animation named wkattack.

50 - The first value specifies the speed, in texels per second.

This is how fast the pawn will travel. This is important to be in

relation with the next value.

50 - This specifies the distance that the pawn will travel. It is

set to 50 because the speed is also set to 50. This is to

ensure that the movement will last for 1 second. This is also

the length of the animation used by the pawn.

“” - Once again the empty quotations is where a sound file

would be defined if used.

What happens now, is the pawn will walk towards the

player for one second, while it fires one shot. It then rotates to

face the player and performs the same task again, until it

finally runs into the player. What is required is a means of

testing the players distance from the pawn, so that the pawn

will stop from running into the player. Add the following to the

attack order.

Attack[()

{

RotateToPlayer("wkattack", 160, false, "");

FireProjectile("pistolbullet","HandR",0,0,0,"health","");

if (self.player_range>96)

{

MoveForward("wkattack",50,50,"");

}

else

{

Delay("stattack",1,"");

}
RestartOrder();

}]

3D Games with Reality Factory

130

The order has now been changed to test the value of

the global variable, self.player_range. This variable holds the

distance in texels, from the pawn to the player. The condition

is tested using the if command. The syntax for if, is shown

below.

if (condition = true)

{

Command Statements

}

Condition=true, represents a value to test. In this case,

the condition to test is if the variable self.player_range, is

greater then 96 texels. If it is greater then 96 texels, then the

condition is returned as true and the commands within the

curly brackets are executed. In this example, the condition

test is expanded using the else command. Below is the

syntax for using else.

if (condition = true)

{

Command Statements

}

else

{

Secondary Command Statements

}

The else command can only be used with the if

command. Together, they make for a system that can test for

a particular condition and run one of two command sets,

depending on the result. Examining the modification made to

Writing Pawn Scripts

131

the Attack Order, it seems that the if / else command checks

to see if the player is more then 96 texels away and if so,

walks 50 texels toward the player. If the player is within 96

texels of the pawn, then the pawn will stand and fire, without

walking towards the player.

Using Script Points

Script Points, are markers that reference a location in

the level. They are used to direct the pawn and define motion

objectives. The most common application using Script Points,

is to guide a pawn with a camera attached to it and is used to

create in-game movies. However, pawns can also be tele-

ported to a script point, making them capable of being re-

used within a level. In the next example, a Script Point is used

to start the pawn at its original position before it has found a

target. This is scripted to occur, when the pawn is destroyed

by the player. Add a Script Point to the test level and position

it at the same height of the pawn entity. Offset it in any

direction by 8 texels. Change the szEntityName entry for the

Script Point to, point01. Then add the following to the order

named Die and remove the command, Remove(true).

Die[()

{

PlayerDistOrder(0,"");

FadeOut(0,2);

TeleportToPoint(“point01”);

FadeIn(255,5);

AttributeOrder("health",20,"Die");

NewOrder(“LostTarget”);

}]

3D Games with Reality Factory

132

Here, three new commands are introduced. FadeIn,

FadeOut and TeleportToPoint. These commands do exactly

what their names imply. All that is required to use them is an

understanding of the parameters. For TeleportToPoint, the

parameter is simply the name of the Script Point. For FadeIn

and FadeOut, the first parameter is the time it takes in

seconds, to fade to a specified transparency value. The

second parameter defines a transparency value that is

between 0 and 255. Completely transparent is a value of 0

and 255 is completely solid. In this example, the FadeOut

command has the pawn become completely transparent in 2

seconds and FadeIn has the pawn go from transparent to

solid in 5 seconds. In between these actions, the pawn is tele-

ported to the point named, point01. Compile the test level and

do battle with the pawn. Every time it is destroyed, it will fade

out and tele-port itself back to the start position. It then

returns to the idle animation and waits for the player to come

into view again.

The most important command in the new death order

though, is the first line, PlayerDistOrder(0,””). This turns off

the distance checking that was set in the Alert Order. If this

command was omitted, then as soon as the pawn is tele-

ported away, the distance checking would call the order

LostTarget. This would make the Die order jump to the

LostTarget order and not run the last three commands. The

result would be a pawn that is tele-ported to point01, but

remains invisible and can not be destroyed. The last three

commands, are there to fade the pawn back to a solid

transparency and then reset the health attribute assigned to

it. With the distance checking properly disabled, the script will

run the Lost Target order, only after the fading in has finished

and the attribute is reset.

Writing Pawn Scripts

133

When testing the script, one may notice that when the

pawn is tele-ported back to point01, it is still facing the

direction it was when it was destroyed. The pawn needs to be

rotated, to face the same direction as the Script Point is in the

world editor. Add two more commands to the Die order.

Die[()

{

PlayerDistOrder(0,"");

FadeOut(0,2);

NewPoint("point01");

RotateToAlign("idle",500,false,"");

TeleportToPoint(“point01”);

FadeIn(255,5);

AttributeOrder("health",20,"Die");

NewOrder(“LostTarget”);

}]

The first command NewPoint(), is used to define the

reference point for the pawn. In this case, it references

point01. When a pawn has to interact with a Script Point, the

pawn needs to have that Script Point defined as the, Current

Script Point. This is because many of the commands that

interact with a script point, do not use a Script Point name as

a parameter. RotateToAlign, is an example of one of those

commands. The parameters for RotateToAlign are as follows.

• idle - This is the animation to play while the rotation is

occurring. In this instance, the pawn is set to play the idle

animation.

• 500 - This is the rotation speed in texels per second.

Because the command is called while the pawn is

3D Games with Reality Factory

134

invisible, it is done very quickly to just get the pawn into

position as fast as possible.

• false - If this command was set to true, then the pawn

would rotate to align itself with the pitch of the Script Point

as well. In this case, it is not necessary so the parameter

is set to false.

• “” - Once again, this is the parameter that defines a

sound file. No sound is defined for this command.

Now when the level is tested, before the pawn is tele-

ported to the Script Point, it will align itself to match the

direction that the Script Point is facing.

Enhancing the Death Effect

Right now, all the pawn does when destroyed is fade

out. The next enhancement adds an Explosion Effect and an

animation before the fade occurs. Add the following to the Die

order.

Die[()

{

PlayerDistOrder(0,"");

AddExplosion("GrenadeExplosion","Root",0,0,0);

if(random(1,10)>5)

{

AnimateStop("die1",0,"");

}

else

{

AnimateStop("die2",0,"");

}

Writing Pawn Scripts

135

FadeOut(2,0);

NewPoint("point01");

RotateToAlign("idle",500,false,"");

TeleportToPoint("point01");

FadeIn(5,255);

AttributeOrder("health",20,"Die");

NewOrder("LostTarget");

}]

Before examining the AddExplosion command, take a

look at the system to animate the pawn. The if command is

again used to check if a random number between 1 and 10, is

greater then 5. If it is, then the first animation, die1 is played.

If it is not greater then 5, then the second animation, die2 is

played. This adds a bit of variety to the pawns death

sequence. In order to add a nice looking effect to the death,

the AddExplosion command is used. Below is a breakdown of

the parameters.

GrenadeExplosion - This is an explosion defined in the

explosion.ini file for RF07 Be sure to open the explosion.ini

file and check to see that the heading is present. More about

effects in a later chapter. For this example, a large sprite

explosion is used, but any of the explosions in the ini file can

be used.

Root - This is the name of the joint that the explosion is

attached to. This is specific to the model. The android actor

file that is found in the media pack for this book, has the Root

Joint named, Root.

0,0,0 - These values define an X, Y, Z offset for the

explosion. In this instance, there is no offset. These values

are in relation to the angle that the pawn is facing.

3D Games with Reality Factory

136

At this point, the pawn is close to being able to go in a

level and be used as an enemy. Right now though, it can

only work in a test level that has no geometry. To make it

more functional, it will need a means of avoiding obstacles.

Low Level Combat

Before continuing to examine a Low Level attack

routine make a few adjustments to a couple of orders in the

script. Modify the Spawn, the LostTarget and the Alert order.

Spawn[()

{

Console(true);

AttributeOrder("health",20,"Die");

SetFOV(360);

HostilePlayer(true);

HostileSame(false);

HostileDifferent(false);

SetGroup("Enemy");

NewOrder("LostTarget");

}]

Alert[()

{

AnimateStop("alert",0,"");

LowLevel("Attack");

}

LostTarget[()

{

PlayAnimation("idle", false,"");

Writing Pawn Scripts

137

FindTargetOrder(512,"Alert","health");

}]

What these changes have done is make the script a

bit more efficient, increases the target distance and removes

the PlayerDistOrder() command. This gets the script ready to

use a Low Level Combat routine. It switches to Low Level

from the Alert order. Re-write the Attack order to read as

follows. Below the new order is a breakdown of the

commands.

Attack[()

{

self.ThinkTime=0.05;

self.yaw_speed=160;

UpdateTarget();

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

}

self.ThinkTime=0.05; Because the order runs at a Low Level, the order will

constantly loop. The looping interval is specified to run the

order every 0.05 seconds. That comes to 20 times a second.

For the order to operate smoothly, the game will need to run

at a minimum of 20 fps.

self.yaw_speed=160; self.yaw_speed is a variable which can be set by the

script and controls the Y axis rotation speed of the pawn. This

variable must be set before any rotation can occur. Although

in this instance it is called every time at the start of the order,

it really only needs to be called once during the script.

3D Games with Reality Factory

138

}]

This low level order returns the pawn back to the level

of a turret. All the pawn will do is face the player at all times, a

soon as it is targeted.

Low Level Motion

Moving a pawn using low level commands, is very

different from how High Level commands move a pawn. A

Low Level order, loops at a rate that is defined by the

UpdateTarget(); When an enemy is targeted by a pawn, it is the

location of the enemy that is kept as a reference to the target.

Since the player is constantly moving, this new target position

needs to be updated manually using the UpdateTarget()

command. The command is called once every time the order

loops so this makes the pawns targeting very accurate.

if(self.enemy_vis=true) The self.enemy_vis variable is a read only value that

contains a true or false depending on whether or not the

currently targeted enemy is in view of the pawn.

self.ideal_yaw=
self.enemy_yaw;

This line contains two variables. The self.ideal_yaw

variable sets the Y axis angle in radians, that the pawn should

face. This will be discussed further a bit later. The variable

self.enemy_yaw is a read only variable, that holds the Y axis

rotation in radians, that the pawn must face in order to point

at the currently targeted enemy. By setting the self.ideal_yaw

variable to hold the self.enemy_yaw variable, the pawn will

always have it’s ideal rotation to face the player.

ChangeYaw(); The above command does not actually rotate the

pawn, it only sets the self.ideal_yaw variable. In order to

rotate the pawn, the command ChangeYaw() is used. This

command begins to rotate the pawn towards the

self.ideal_yaw value. More about this later on.

Writing Pawn Scripts

139

self.ThinkTime variable. In this case, it is set to run at 20

times a second. This presents a smooth rate of rotation for

the pawn, as it comes to its ideal yaw. The slower the

ThinkTime for the order, the more ‘choppy’ the rotation would

be. Before continuing, modify the order so as to give the

pawn the ability to walk. Add the following to the Attack order.

Attack[()

{

self.ThinkTime=0.05;

self.yaw_speed=160;

UpdateTarget();

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

if(self.enemy_range>128)

{

SetHoldAtEnd(true);

Animate("wkattack");

self.think="Walk";

return 0;

}

}

}]

Note, that this code is added before the closing

bracket of the if(self.enemy_vis) condition tester. This makes

it a part of the code that results from a true condition. What

this code does, is prepare the pawn to switch to another

order, that will execute the walking. Before adding the new

order, examine the description of the newly added

3D Games with Reality Factory

140

commands.

• if(self.enemy_range>128) - This conditional test uses the

variable, self.enemy_range. This is similar to the

self.player_range variable, but instead holds the distance

to the currently targeted enemy. In this case, if the

distance is greater then 128 texels, then the commands

within the brackets are executed.

• SetHoldAtEnd(true / false) - This command instructs the

script handler to stop playing the animation at the end of it

and not loop it. This will be used in the next order, to find

out when the animation has come to its end. The

command is called with a false value, in every instance

before the order exits.

• Animate(“wkattack”) - This is a Low Level command that

sets the current animation for the pawn. In this case, the

animation is wkattack.

• self.think=”Walk” - This command instructs the script

handler to to go to the order named Walk, immediately at

the end of this order.

• return 0 - This instructs the interpreter to no longer

continue with this order and restart.

As an overview, it seems that this bit of script, first

tests to see if the visible enemy is further then 128 texels of

the pawn and if so, set the animation to hold at the end, start

the wkattack animation and then switch to another Low Level

order named Walk. Now to add the Walk order. Add the

following order to the script.

Walk[()

{

Writing Pawn Scripts

141

self.ThinkTime=0.05;

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

}

else

{

SetHoldAtEnd(false);

HighLevel("LostTarget");

return 0;

}

if(self.animate_at_end=false)

{

walkmove(self.ideal_yaw,50);

}

else

{

SetHoldAtEnd(false);

FireProjectile("pistolbullet","joint12",0,-2,0,"health");

self.think="Attack";

return 0;

}

}]

This order can be broken down into two parts. The

first, is the conditional test for self.enemy_vis and the second

part, is the conditional test or self.animate_at_end. One may

ask why the test for self.enemy_vis is checked again, if it was

just checked in the last order? The reason for this is that, the

self.enemy_vis call, also updates the position of the enemy. If

this was not checked, then the pawn would always consider

3D Games with Reality Factory

142

the original position, to be the current position of the enemy. If

UpdateTarget was used to fire at the enemy, it would do so

without rotating the pawn to face the enemy. So the first

section of the order is similar to the first section of the Attack

order, in the sense that it uses ChangeYaw, to constantly

face the enemy. This allows the pawn to always turn with the

player as the walking animation occurs. If the conditional test

for self.enemy_vis fails, then the order returns itself to the

LostTarget order.

The next half of the order is a second conditional test,

that will determine whether or not the animation has come to

it’s end. This is how the attack sequence will be timed. Before

continuing with a breakdown of the order, it is important to

understand how the order is being processed. Since the order

is processed while running at a Low Level, it constantly loops

at a rate that is defined by the self.ThinkTime setting. This

means, that only a portion of the motion will be performed

if(self.animate_at_end

=false)

The self.animate_at_end variable, is a read only value

that will return true, if the animation has come to its last key-

frame. This only works when the SetHoldAtEnd(true)

command has been previously called.

walkmove(self.ideal_yaw,50) The walkmove() command is the basic Low Level

method for moving a pawn. It breaks down simply as, move

the pawn in the direction defined by the first parameter, a

distance that is defined by the second parameter. In this case

the pawn is instructed to move 50 texels in the direction

defined by self.ideal_yaw. Since the pawn is constantly

rotating to face this direction, it will always be forward. What

is important to know, is that the pawn will only move the full

50 texels within one second, because this is the length of the

order. During one loop of the order, the pawn will only travel

2.5 texels. This is the distance, divided by the looping rate.

Later, a conditional test is added to the walkmove command,

to avoid obstacles.

Writing Pawn Scripts

143

within one loop of the order. What the order needs to do is

run for only as long as the animation of the pawn. Then at the

end of the animation, the pawn fires a projectile and returns to

the Attack order. Since the animation lasts for one second,

the order only runs for this long as well.

At this point, when the pawn is alerted to the presence

of an enemy, it will attack the enemy by constantly charging

and firing. Now the script will be modified, to have the pawn

keep a certain distance from the enemy, so as to prevent the

pawn from over running the player. Add the following to the

Attack order.

Attack[()

{

self.ThinkTime=0.05;

self.yaw_speed=160;

UpdateTarget();

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

FireProjectile("pistolbullet","

joint12",0,-2,0,"health")

This the first of two Low Level versions of the

FireProjectile command. It is exactly the same as the High

Level version, except there is no definition to play a sound.

This command is called at the end of the animation, making

the pawn fire at a rate of 1 shot per second.

self.think="Attack";

return 0;

Once the animation has ended and one projectile has

been fired by the pawn, the looping of this order ceases and

the script is redirected to run the order named Attack. The

Attack order then checks for an enemy in site and takes the

correct action as to either attack again or go to the LostTarget

order.

3D Games with Reality Factory

144

if(self.enemy_range>128)

{

SetHoldAtEnd(true);

Animate("wkattack");

self.think="Walk";

return 0;

}

else

{

TC=self.time;

Animate("stattack");

self.think="Stand";

return 0;

}

}

}]

What this does, is add an else condition to the

self.enemy_range conditional test. If the enemy range is less

then 128 texels, then these commands are processed. The

commands are similar to the result of a true condition, but

instead of using the animation length to time the Stand order,

a variable to keep track of time is used. This is the first line,

TC=self.time, which accesses a read only variable that

returns the time in seconds that have passed since the start

of Low Level processing. Before continuing, add a declaration

for the TC variable, between the very first curly bracket of the

entire script and the Spawn order. Below is an example.

{

TC [0]

Spawn[()

Writing Pawn Scripts

145

{

Console(true);

AttributeOrder("health",20,"Die");

SetFOV(360);

HostilePlayer(true);

HostileSame(false);

HostileDifferent(false);

SetGroup("Enemy");

NewOrder("LostTarget");

}]

Now add the Stand order to the script. It is very similar

to the Walk order, except for the second conditional test.

Stand[()

{

self.ThinkTime=0.05;

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

}

else

{

HighLevel("LostTarget");

return 0;

}

if(self.time>TC+0.5)

{

FireProjectile("pistolbullet","joint12",0,-2,0,"health");

self.think="Attack";

return 0;

3D Games with Reality Factory

146

}

}]

It seems that the order is exactly the same as the

Walk order, except that instead of checking for the end of the

animation, a conditional test for the time is evaluated. TC was

set to the hold the time just before the order was called. This

conditional test, will continue to check and see if 0.5 seconds

has elapsed and then run switch to the Attack order, so as to

assess the enemy range again. It does this by checking if the

self.time variable, is 0.5 seconds greater then TC. Compile

the test level and run the order. The pawn will now act in a

manner, similar to that when it was a running at a high level.

What needs to be added now, is a means of detecting

whether or not the pawn has been destroyed during the Low

Level processing.

Add the following lines to both the Walk order and the

Stand order, right after the line self.ThinkTime=0.05.

if(self.health=0)

{

HighLevel("Die");

return 0;

}

This is a conditional test for the self.health variable.

This is a read only value, that contains the amount of attribute

that the pawn still has, after being assigned it by the High

Level, AttributeOrder() command. If the value has reached 0,

then the script processing is switched to the High Level order

named Die. Compile the test level and try the low level

Writing Pawn Scripts

147

combat routine. Every time the pawn is destroyed, it restarts

itself at the Script Point. To make the pawn almost complete,

all that must be added is a means of avoiding obstacles.

Low Level Collision Detection

Collision detection at a Low Level is accomplished

using the walkmove() command as a conditional test. Add the

following to the Walk order. The conditional test for self.health

from the last addition has also been made bold.

Walk[()

{

self.ThinkTime=0.05;

if(self.health=0)

{

HighLevel("Die");

return 0;

}

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

}

else

{

SetHoldAtEnd(false);

HighLevel("LostTarget");

return 0;

}

if(self.animate_at_end=false)

{

3D Games with Reality Factory

148

if(walkmove(self.ideal_yaw,50)=false)

{

if(random(1,10)>5)

{

ForceLeft(10);

}

else

{

ForceRight(10);

}

}

}

else

{

SetHoldAtEnd(false);

FireProjectile("pistolbullet","joint12",0,-2,0,"health");

self.think="Attack";

return 0;

}

}]

Now walkmove is used as a conditional test, to see if it

can travel the distance that is covered, within one loop of the

order. If it can, then it returns true. If it can’t, then it returns a

false. With the result of a false value being returned, a

second conditional test is performed. The second test, is for a

random number between 1 and 10. If it is less then 5, a

ForceRight() command is executed. If it is greater then 5,.

then the ForceLeft() command is executed. The parameter for

ForceRight and ForceLeft is not a value that represents

texels. It instead defines the amount of Force to apply to the

pawn. This value usually needs some adjusting, since it

Writing Pawn Scripts

149

depends on the scale of the pawn.

This level of collision avoidance is about as simple as

it gets, but is effective enough to make the pawn go around

short objects and avoid stopping at corner. Add a few 32 x 32

x 32 brushes to the test level and watch the pawn bounce its

way around them as it travels towards the player. At this point

the pawn is ready to be customized for a level. The next

chapter will outline adding the robot pawn to the Space

Escape level. Here is the complete script.

{

TC [0]

Spawn[()

{

Console(true);

AttributeOrder("health",20,"Die");

SetFOV(360);

HostilePlayer(true);

HostileSame(false);

HostileDifferent(false);

SetGroup("Enemy");

NewOrder("LostTarget");

}]

Alert[()

{

AnimateStop("alert",0,"");

LowLevel("Attack");

}]

LostTarget[()

{

PlayAnimation("idle",false,"");

FindTargetOrder(400,"Alert","health");

}]

3D Games with Reality Factory

150

Attack[()

{

self.ThinkTime=0.05;

self.yaw_speed=160;

UpdateTarget();

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

if(self.enemy_range>128)

{

SetHoldAtEnd(true);

Animate("wkattack");

self.think="Walk";

return 0;

}

else

{

TC=self.time;

Animate("stattack");

self.think="Stand";

return 0;

}

}

}]

Walk[()

{

self.ThinkTime=0.05;

if(self.health=0)

{

HighLevel("Die");

return 0;

}

if(self.enemy_vis=true)

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

Writing Pawn Scripts

151

}

else

{

SetHoldAtEnd(false);

HighLevel("LostTarget");

return 0;

}

if(self.animate_at_end=false)

{

if(walkmove(self.ideal_yaw,50)=false)

{

if(random(1,10)>5)

{

ForceLeft(10);

}

else

{

ForceRight(10);

}

}

}

else

{

SetHoldAtEnd(false);

FireProjectile("pistolbullet","joint12",0,-2,0,"health");

self.think="Attack";

return 0;

}

}]

Stand[()

{

self.ThinkTime=0.05;

if(self.health=0)

{

HighLevel("Die");

return 0;

}

if(self.enemy_vis=true)

3D Games with Reality Factory

152

{

self.ideal_yaw=self.enemy_yaw;

ChangeYaw();

}

else

{

HighLevel("LostTarget");

return 0;

}

if(self.time>TC+1)

{

FireProjectile("pistolbullet","joint12",0,-2,0,"health");

self.think="Attack";

return 0;

}

}]

Die[()

{

AddExplosion("GrenadeExplosion","Root",0,0,0);

if(random(1,10)>5)

{

AnimateStop("die1",0,"");

}

else

{

AnimateStop("die2",0,"");

}

FadeOut(2,0);

NewPoint("point01");

RotateToAlign("idle",500,false,"");

TeleportToPoint("point01");

FadeIn(5,255);

AttributeOrder("health",20,"Die");

NewOrder("LostTarget");

}]

}

Space Escape - Stage 5

153

The previous chapters, were devoted to developing

the media required for stage 5 of the game design process.

This chapter, will discuss stage 5 for the space escape demo.

The next steps will add a weapon and the game enemies.

Then, after the game play has been tested out, a level puzzle

and a HUD will be added.

Adding a Weapon

Start by copying the two actor files named

PlasmaRifle.act and bullet1.act, from the media package for

this book, to the RF media\actors folder. With the actors in

place, RF must now be configured to use this weapon. Run

NotePad and open the player.ini file. Add the following entries

and then close the file.

[PlasmaRifle]

initial=1

low=0

high=1

[PlasmaBullet]

initial=100

low=0

high=100

3D Games with Reality Factory

154

This starts off the player with 1 Plasma Rifle and 100

Plasma Bullets. Now these will be defined in the weapon.ini

file. Edit the weapon.ini file and add the following entries.

[PlasmaBullet]

type = projectile

actor = bullet1.act

rotation = 0 0 0

scale = 1

gravity = false

bounce = false

speed = 1000

lifetime = 1

boundingbox = 0.1

explosion = CorExpl

actorexplosion = BotExpl

damage = 5

altdamage = 1

explosionradius = 0

explosiondamage = 1

decal = 0

[PlasmaRifle]

type = weapon

slot = 0

firerate = 0.2

catagory = projectile

projectile = PlasmaBullet

attribute = health

altattribute = health

ammunition = PlasmaBullet

ammopershot = 5

Space Escape - Stage 5

155

viewactor = PlasmaRifle.act

viewfillcolor = 128 128 128

viewambientcolor = 32 32 32

viewrotation = -1.40 90 0

viewoffset = 1.20 -3.70 -2.60

viewscale = 1

viewlaunchbone=joint2

viewanimspeed = 1

viewidleanim = gun2idle

viewattackanim = gun2shoot

viewwalkanim = gun2walk

Now delete all the other entries from the weapon.ini

file, so that only these two remain. This will be the final

weapon definition for the Space Escape demo. The first entry,

defines the projectile for the Plasma Rifle. It is a visible actor,

that has two effects assigned to it. These are defined with the

entries, explosion and actorexplosion. They will be defined

next.

The second entry defines the Plasma Rifle and makes

it the default weapon for the level. When the level starts, the

player will automatically have the plasma rifle present. This is

done by removing the entry named Default and setting the

slot entry of the Plasma Rifle to 0. This only covers the first

person data for the weapon, since the demo will be fixed to

this view.

Before defining the effects for the projectile, edit the

playersetup.ini file and find the attributename entry under the

Misc heading. Change the following entries.

3D Games with Reality Factory

156

attributename = PlasmaBullet

recoverytime = 0.1

This feature makes the Plasma bullet entry always

restore itself. The effect is a Plasma RIfle that can fire 10

rapid shots and then slowly charge back up to full capacity.

Save the file and open the effects.ini file. Add the following.

[YellowLight]

type = light

colormax = 237 230 37

colormin = 237 40 37

radiusmax = 150

radiusmin = 100

intensity = 1

totallife = 0.2

[Corona]

type = corona

fadetime = 0.15

minradius = 0.5

maxradius = 2

maxvisibledistance = 1000

maxradiusdistance = 2

minradiusdistance = 1

color = 237 40 37

totallife = 0.2

[BotSpray]

type = spray

bitmapname = flame03.bmp

alphamapname = a_flame.bmp

Space Escape - Stage 5

157

angles = 0 90 0

colormax = 0 0 255

colormaxalpha = 255

colormin = 0 0 100

colorminalpha = 200

sourcevariance = 2

destvariance = 2

gravity = 0 0 -45

maxscale = 0.25

minscale = 0.15

maxspeed = 300

minspeed = 100

maxunitlife = 0.3

minunitlife = 0.2

particlecreationrate = 0.01

totallife = 0.3

bounce = false

[BlueCorona]

type = corona

fadetime = 0.15

minradius = 0.5

maxradius = 2

maxvisibledistance = 1000

maxradiusdistance = 2

minradiusdistance = 1

color = 200 200 255

totallife = 0.2

Note that the effect YellowLight, is already defined in

RF07 and may not need to be added. These four effect

entries will make up the explosion that are defined for the

weapon. One effect is a Light type, two are Corona effects

3D Games with Reality Factory

158

and another is a Spray effect. The only entry that uses media

is BotSpray, which requires flame03.bmp and a_flame.bmp. If

these are not already located in the RF media folder, then

copy them from the media package for the book. Save and

exit the effect.ini file and then edit the explosion.ini file. Add

the following.

[CorExpl]

effect0 = Corona

delay0 = 0

offset0 = 0 0 0

effect1 = YellowLight

delay1 = 0

offset1 = 0 0 0

[BotExpl]

effect0 = BlueCorona

delay0 = 0

offset0 = 0 0 0

effect1 = BotSpray

delay1 = 0

offset1 = 0 0 0

effect2 = YellowLight

delay2 = 0

offset2 = 0 0 0

These define the explosions, from the predefined

effects added to the effect.ini. The weapon is now ready for

testing. Compile and preview the level. It should start with the

Plasma Rifle ready and loaded. Fire at the walls and get a

feel for how the weapon fires and charges. A red colored

corona effect, should be seen when a projectile hits any level

Space Escape - Stage 5

159

geometry. When level actors are hit, a blue colored corona

with a spray will occur. In the next step, enemy pawns will be

added to the level to create a combat experience.

Adding Enemy Pawns

Before adding any type of enemy that is capable of

killing the player, it is necessary to modify the amount of

health the player starts with and the defined death animation.

Start by editing the player.ini file and find the heading named

health. Change it to the following.

[health]

initial=1000

low=0

high=1000

This starts the player off with enough health to clear

the level. If it is still not enough health, then bring it up to

100000. The next step, is to remove the death animation

defined in the playersetup.ini file. This cancels the RF third

person death sequence, which is used to cinematic scenes

when the player is killed. Edit the playersetup.ini file and find

the following entries.

die = Die Die1

injury = Injury

Use a semi-colon, to comment them out like so.

;die = Die Die1

;injury = Injury

What to Read

Be sure to read the following

from the RF off-line docs.

• Weapon Definition

• Predefined Effects

• Predefined Explosions

• Pawn

• Player Data Definition

3D Games with Reality Factory

160

Save and exit the files. RF is now ready to test out the

combat system for the game. All that is required now, is to

add the enemies to the level.

To make the pawn available to RF, it must be defined

in the pawn.ini file. If this has not been done already then add

the following to the pawn.ini file. If Robot is already defined,

then just change the heading,

[Android]

actorname = android1.act

actorrotation = 0 180 0

actorscale = 0.6

fillcolor = 128 128 128

ambientcolor = 128 128 128

subjecttogravity = true

boundingboxanimation = idle

shadowsize = 64

Save the file and then copy the android1.act file from

the media package into the RF media\actors folder. Also,

copy the robot.s script from the media package, into the RF

Scripts folder. This script is similar to the one in the previous

chapter except for a few changes. First change the Console

command in the Spawn Order to false as so. Console(false);

Then modify the Die order as follows.

Die[()

{

AddExplosion("GrenadeExplosion","Root",0,0,0);

if(random(1,10)>5)

{

AnimateStop("die1",0,"");

Space Escape - Stage 5

161

}

else

{

AnimateStop("die2",0,"");

}

FadeOut(2,0);

Remove(true);

}]

This modification does not re-spawn the pawn at a

script point and instead, just removes it from the level. Now

find the two instances of the FireProjectile command and

change the first value to be PlasmaBullet instead of

pistolbullet.

FireProjectile("PlasmaBullet","HandR",0,0,0,"health");

This will make the pawn fire the same projectile as the

player, so it can be visible when the player is fired at. Be sure

to only change the first parameter and not any others.

The proper environment for the pawns has now been

established and the Pawn Entities an be added to the level.

The side bar shows the pawns added to the level and the

direction that they are set to face. Below that, is the properties

for the pawn entity. In the World Editor, add a single pawn to

the level and then copy / paste the rest into position. Be sure

to position the entities, right against the floor of the level.

The previous chapter that described the script, was

were all the had work took place. With a script already written

for them, all that was needed to populate the level, was to

copy and paste as many as were required. The level can now

PawnType - Android

ScriptName - robot.s

SpawnOrder - Spawn

3D Games with Reality Factory

162

be compiled and previewed and the combat system tested

out. The pawns will charge at the player until within a certain

distance and fire a shot every second or so. They will require

4 shots to be killed, since they are given an attribute of 20 in

the script and the weapon removes 5 points per shot.

This completes two of the three tasks, that make up

stage 5 of the design process. Since there is now a weapon

and enemies added to the level, everything is in place to add

a working Heads Up Display or HUD. The next chapter is

devoted to making HUD graphics and adding them to RF.

This will be the final step, in stage 5 of the Space Escape

development process.

Heads Up Display

163

RF has a built in system for a Heads Up Display or a

HUD. This is the 2D graphics, that makes up the display of

the attributes that the player has. It also incorporates a built

Radar and Compass display. The RF HUD, is defined through

the hud.ini file. This chapter will discuss the RF HUD system

and then build the HUD for Space Escape.

HUD Coordinates

The RF HUD definitions, will always require a X and Y

coordinate in order to position the HUD element. Since RF

can be set to many resolutions, the HUD system is designed

to accommodate for this and expand to meet any screen size.

On the next page is a diagram that shows how the HUD is

broken up into four sections, that have positive and negative

values. The coordinates that are marked in the diagram,

represent the X and Y coordinates of a HUD element that

would go there.

For example, to position a 256 x 256 image as a HUD

element in the Top Left of the screen, it would require the

coordinates 0,0. Placed at the Top Right of the screen, it

would require the coordinates to be -256,0. An image that is

128 x 128 placed in the Bottom Right, would require the

coordinates to be -128,-128. HUD elements can be placed in

3D Games with Reality Factory

164

the exact center by using the value, center.

HUD Graphics

RF HUD graphics, require an image to be used as the

HUD element, and another image which defines the

transparent portions of the graphic. The graphic which defines

the transparent portions is termed the Alpha Map. The side

bar contains two graphics, which can be used to display

weapons ammo for an MP5. The top image is of the MP5 and

the bottom image is the alpha map. Areas that are black (

RGB 0,0,0) will be totally transparent and areas of the alpha

map that are white, (RGB 255,255,255) will be completely

0,-0

0,0

-0,-0

-0,0

center

center

X

Y

An image that is 128 pixels

wide in the top right corner

would require the screen

coordinates: -128 , 0

An image placed in the

middle left side, would

require the screen

coordinates: 0, center

Heads Up Display

165

visible. Any value in between, is a semi-transparent value. For

example, if the white areas were made to be grey, (RGB

128,128,128) then the MP5 HUD element, would be semi-

transparent when displayed in the game.

HUD Types

RF has five HUD types that can be defined in the

HUD.ini file. They include a Radar, a compass, a vertical type,

a horizontal type and a numeric display. Below is a break

down of each type of HUD display.

• Radar - The radar element for RF works by displaying

either a pawn or a static entity indicator, within a circular

area. A unique indicator graphic, can defined for pawn

and static entities.

• Compass - RF also has a feature that can display a

compass as a HUD element. The element will rotate left

and right, in correlation with the direction that the player is

facing.

• Vertical and Horizontal - HUD elements for all other

attributes, are one of three types. Vertical, horizontal or

numeric. Vertical or horizontal types, are used to display a

graphic as the indicator for the attribute. If the the attribute

uses the vertical type, then the graphic will fade

downwards as the attribute decreases. A horizontal type,

will have the attribute fade from left to right.

• Numeric - The simplest display for a HUD element is a

numeric display. This simply overlays a numeric value

representing the attribute, over a defined graphic.

3D Games with Reality Factory

166

The Space Escape HUD

The following example will detail the making of the

HUD for Space Escape. It uses Adobe Photoshop 6 for the

example but almost any paint program can be used to follow

the necessary steps. The first HUD element will be used to

display the energy contained by the weapon. Any files made

here must be saved in the RF media\bitmaps\hud folder.

• Step 1 - Create a new RGB image with a width of 256 and

a height of 64. Select the option to display the Grid over

the image, the Grid should be sized to 32 x 32 with 4 sub

units. Be sure that, Snap to Grid is selected.

• Step 2 - Paint the Background black (RGB 0,0,0) and then

add a new Layer. Name the new Layer, Shell. Select the

new Layer.

• Step 3 - Change the foreground color to RGB 24,93,116

and paint the layer with that color.

• Step 4 - Use the Select Tool to select a rectangle from

16,16 to 240,48 and Cut the area from the layer.

• Step 5 - With the new Layer still selected, sect the Layers

menu and the choose Layer Style - Bevel and Emboss.

Click OK and use the default settings.

• Step 6 - Click the Select Color Tool and select the area

that had been cut out. The black area should become

selected. Add a new Layer and name it, Indicate. Select

the new Layer. Do not deselect the black area.

• Step 7 - Change the Foreground Color to RGB 166,43,24

and paint in the selected area. This red colored area will

serve as the indicator. Still, do not deselect the selected

area that is now painted red.

• Step 8 - Create a new Layer and name it Alpha1. Change

Heads Up Display

167

the Foreground Color to RGB 255,255,255 and set the

Background Color to 0,0,0.

• Step 9 - Paint the selected area white and then under the

Select Menu choose, Inverse. Paint the inverted selection

black. Still, do not deselect the inverted selection area.

• Step 10 - Create a new layer and name it Alpha2. Select

this layer and paint the selected area white. Now inverse

the selection again, and paint the inverted area black.

This creates four layers that will each be a graphic that

is used in the HUD. These layers must now we saved into

individual images, that will make up the HUD element.

• Step 1 - With the layer Alpha2 visible, save the image in

the RF media\bitmaps\hud folder under the name,

gun_shell_alpha.bmp.

• Step 2 - Make the Alpha2 layer invisible so that Alpha1

can be seen and then save the file as,

gun_indicate_alpha.bmp.

• Step 3 - Now make layer Alpha1 invisible and the layer

named shell invisible. The only layers which should be

visible is the Background and the layer named indicate.

Save this image under the name, gun_indicate.bmp.

• Step 4 - Now make the shell layer visible again and make

the indicate layer invisible, save the resulting image as

gun_shell.bmp.

The side bar shows the images used for the Frame

and the Frame alpha map. Once again, these must be placed

in the RF media\bitmaps\hud folder.

gun_shell.bmp

gun_shell_alpha.bmp

3D Games with Reality Factory

168

Defining the HUD Element

Before continuing, open the escape.3dt file in the

World Editor and edit the properties of the playersetup entity.

Change the HudInfoFile property, to spacehud.ini. Compile

the level with the new setting. To test the level, just run it by

making it the default loading level for RF.

Open the RF install folder and edit the hud.ini file.

Save it under the name spacehud.ini. Delete every entry from

the newly saved file and add the following new entry.

[PlasmaBullet]

type = horizontal

frame = hud\gun_shell.bmp

framealpha = hud\gun_shell_alpha.bmp

framex = 0

framey = 0

indicator = hud\gun_indicate.bmp

indicatoralpha = hud\gun_indicate_alpha.bmp

indicatoroffsetx = 0

indicatoroffsety = 0

indicatorwidth = 256

This sets the element to be the Horizontal type.

This defines the gun_shell.bmp graphic to be the

frame image for the element.

This defines the gun_shell_alpha.bmp graphic, to be

the alpha map for the frame image of the element. The

Frame graphic will always be visible even if there is no more

ammo.

type = horizontal

frame = hud\gun_shell.bmp

frame =

hud\gun_shell_alpha.bmp

Heads Up Display

169

What this does, is define a HUD element for the

attribute named PlasmaBullet, which is defined in the

player.ini file. This creates a visual representation, of the

amount of PlasmaBullet Attribute left. See the break down of

the definition for an explanation of each entry.

Run RF and test out the HUD element. As shots from

the Plasma Rifle are fired, the indicator should drop. When

shots are not being fired, then the indicator will gradually

climb up again to full capacity. Now a second HUD element

will be added, to display the remaining health attribute that

the player has. This will be a Numeric type display and will

only require a frame image. The side bar contains two images

These two lines define the X and Y coordinates for

the frame image. In this case, the image is positioned in the

Top / Left corner of the screen.

framex = 0

framey = 0

The indicator image and the alpha used for it, are

defined using the indicator and indicator alpha setting. They

are defined just like the frame images.

indicator =

hud\gun_indicate.bmp

indicatoralpha =

hud\gun_indicate_alpha.bmp

The indicator may not always be the same size of the

frame image and in that case, the offset from the top left of

the frame coordinates, is defined using these two values. In

this case however, the indicator image is the same size as

the frame image, and therefore requires no offset.

indicatoroffsetx = 0

indicatoroffsety = 0

Since the indicator is of the horizontal type, then the engine

will need to know the width of the image, so that it can be

divided into portions, that represent one unit out of the of the

maximum attribute amount.

indicatorwidth = 256

3D Games with Reality Factory

170

which are used as the frame for the health attribute HUD

element. Add the following element entry to the spacehud.ini

file.

[health]

type = numeric

frame = hud\health_shell.bmp

framealpha = hud\health_shell_alpha.bmp

framex = -64

framey = 0

indicatoroffsetx = 20

indicatoroffsety = 40

font = 9

width = 3

The only real differences between this definition and

the other, is that it is a Numeric type, which removes the need

for an indicator image and a font is defined instead. In this

case, one of the default fonts is used. Fonts are defined in

the menu.ini file. Save the spacehud.ini file and run RF. The

health indicator should appear in the Top / Right corner of the

screen and display the amount of health the player has.

This finishes stage 5, of the development process for

the Space Escape demo. The level should be playable and

almost complete. In the next chapters, a puzzle will be added

to the level and then the menu will be customized. Then, a bit

more detail will be added and finally the demo is packaged for

distribution and testing.

Adding a Puzzle

171

Space escape has one simple puzzle added to it. It is

a simple, Locked Door puzzle. The player must release the

Air Lock Control, in order to enter the Air Lock. This forces the

player to go through the Hallway and into the Control Room,

where the Air Lock Control is located. This chapter will

describe how this puzzle is added to the level and also add

the ability to win the level and exit it.

Puzzle Components

Although this is a very simple puzzle, it will require a

couple of visual enhancements to let the player know that the

door is locked and that it has been unlocked. This will include

an extra Message Entity for the door and a Wall Decal Entity

for the Air Lock Release. Before beginning, copy the file

named airlock.bmp from the media package for this book, into

the RF media\bitmaps folder. This image will be required for

the Wall Decal.

On the next page is a diagram that illustrates the

puzzle and how each element is related to each other. It

starts with the last set of Double Doors, that leads to the air

lock. These will be the locked doors. Examine the diagram but

before adding any entities, first build the World Model which

will act as the Air Lock Release. Start by selecting the texture

3D Games with Reality Factory

172

Door Entities

TriggerName - lgairtrig

For 1 of the door entities set

the szEntityName to:

szEntityName - airdoor

World Model

Name - AirLock

Trigger Entity

szEntityName - airtrig

Model - AirLock

PlayerOnly - true

Logic Gate Entity

szEntityName - lgairtrig

Trigger1Name - airtrig

Type - 5

Wall Decal Entity

TriggerName - lgairtrig

AlphaName - airlock.bmp

BmpName - airlock.bmp

Message Entity

TriggerName - airdoor

Type - Static

Text - AirLock

Dynamic Light Entity

TriggerName - lgairtrig

Color - 255,0,0

Time - 1.0

Logic Gate Entity

szEntityName - lgairdoor

Trigger1Name - airdoor

Type - 6

Puzzle Components

Adding a Puzzle

173

named Com_03 and create a box with the dimensions 16 X -

64 Z - 96 Y. See the side bar for a reference to the position.

The illustration below it, shows the distance of the Wall Decal

from the floor.

With the brush created, select the front face of the

brush in the camera window (be sure to refresh the camera

window first) and texture it with Com_Tow_01. Set the Y

scale to 0.75 and the X scale to 0.5. Align the texture, to

match up with the face. See the screenshot, for how the tower

should look in the level. With the model textured and

selected, select Model from the Models Tab. Name the model,

AirLock and click OK. This model will not require any

animation.

Two entities will now be added to the level. Use the

Template Tab to add a Trigger Entity and a Logic Gate Entity.

The Logic Gate will be a type 5 gate, which acts as a Latch.

What this does, is detect when the trigger goes from low to

high and then lock itself in the high state. Other wise, the

Trigger would go off before the player reached the door. By

using a Latch, the logic gate always stays high after it has

been activated by the trigger. Set the Trigger and Logic Gate

Entities to have the following properties.

Trigger

• Model - AirLock

• szEntityName - airtrig

• PlayerOnly - true

LogicGate

• szEntityName - lgairtrig

3D Games with Reality Factory

174

• Trigger1Name - airtrig

• Type - 5

To use these as a Lock Release for the double doors

to the airlock, set the TriggerName property to be lgairtrig.

This is the szEntityName property of the Logic Gate. Compile

and preview the level. The doors to the air lock should not

open, until the player has made contact with the World Model

in the Control Room. What this needs now, is a few visual

cues to help guide the player.

Visual Aids

Four entities will be used to give the player, an

indication of the state of the puzzle. These include a Wall

Decal, a Dynamic Light and a Message / Logic Gate

combination. Add these four entities to the level and set the

properties as shown below. Position the Wall Decal as shown

in the side bar, on the previous page.

Wall Decal

• TriggerName - lgairtrig

• AlphaName - airlock.bmp

• BmpName - airlock.bmp

Dynamic Light

• TriggerName - lgairtrig

• MaxRadius - 220

• MinRadius - 130

• Color - 255,0,0

• Time - 1.0

Adding a Puzzle

175

Message

• TriggerName - lgairdoor

• Type - Static

• Text - AirLock

LogicGate

• szEntityName - lgairdoor

• Trigger1Name - airdoor

• Type - 6

Although the Wall Decal does not need to be rotated

for this example, it is important to not rotate the entity using

the mouse and only use it by specifying the angle entry.

Position the Wall Decal to point at the Air Lock Control world

model and position the Dynamic light just behind the light in

the Air Lock Room. In order to make the double doors work

with the Message Entity, one of them must be given an

szEntityName. Select one of the entities for the two doors and

set the szEntityName property to, airdoor. Now the message

defined in the Message Entity must be added to the

message.txt file.

[AirLock]

Release the Air Lock

It is important to remember, that when the message.txt

file has entries added to it, some extra carriage return lines,

should also be added to the end of the file. This is to make

sure, that RF reads to the very end of the file. Otherwise it

may not load the message and nothing will be displayed when

the player contacts the locked door.

3D Games with Reality Factory

176

With these four entities added and their properties

configured, the complete puzzle system can be tested. If the

player first tries to enter the Air Lock without releasing the

lock first, they will be presented with the message, Release

the Air Lock. When the player makes contact with the model

in the Control Room, it will then activate the doors, the Wall

Decal and the Dynamic Light.

Ending the Level

The level ends, when the player reaches the Air Lock.

This is easily accomplished by adding a world model and a

ChangeLevel Entity. This entity, is used to end the current

level and switch to a new specified level. A level, can have as

many ChangeLevel entities that are required, for the specific

game scenario. To add the model that acts as the Air Lock,

create a brush with the dimensions 64 X - 16 Z - 128 Y.

Position it as shown in the side bar. Select the newly created

brush and then from the Models Tab, select Model. Name the

model, exit. Now with the Template Tab, add a ChangeLevel

Entity and only change the model parameter to specify the

exit model. Compile and preview the level. When the player

makes it to the Air Lock and comes in contact with the exit

model, the ChangeLevel entity will return the game to the

Main menu. It does this, because no new level is specified in

the szNewLevel property. By default, the entity returns to the

main menu. One thing to keep in mind about the

ChangeLevel Entity, is that the model used with it, must be

solid and not transparent or empty.

exit model

The RF Menu

177

Reality Factory has a configurable menu system, that

allows custom menus to be easily generated from defined

images. Since the release of RF07, the menu system can

display any number of image types, including animated GIF

images and JPG images. This chapter examines the structure

of the RF menu system, discussing the differences between

the old menu and the new menu.

RF Menu Structure

All of the RF menu screens are predefined in the

code. This means that RF always starts with a Main Menu,

that branches off into specific sub-menus. New sub-menus

can not be defined without editing the source code, but not all

the sub-menus need to be defined in the menu.ini file. On the

next page, is a diagram which details the structure of the RF

menu. Each button made available in the Main Menu, will

allow access to the sub-menu, that the button is associated

with. Buttons in these sub-menus, then allow access to further

sub-menus.

All that can really be defined by the user when

creating a menu, are the graphics that will be used to make

up these predefined menus and the buttons that access

them. These are defined in the menu.ini file and the graphic

3D Games with Reality Factory

178

New Load Save Options Credits Exit

Load Game

Save Game

Go Back

Audio

Go Back

Go Back

Video Control Debug

Go Back Go Back Go Back

Go Back Defaults Advanced

Go Back

The RF Menu Structure

The RF Menu

179

images themselves, are placed in the media\bitmaps\menu

folder. This is the default root directory for all menu media,

but can be defined in the RealityFactory.ini file.

Examine the diagram of the RF menu tree on the

previous page. This shows the buttons which are found under

each menu, for a total of nine menu screens. Each menu

screen can have a unique Background Image and Title

Image, along with the buttons. By not defining a button within

a specific menu, it cuts off access to that sub-menu. For

example, if the Credits button was not defined in the Main

Menu, then the player would not be able to access the Credits

Menu. If no Exit button was defined, then the player would

never be able to exit the game. Be sure to always define the

Exit button and the Go Back button, for each menu screen.

The Menu.ini File

Everything having to do with the menu, is defined

within the menu.ini file. This is a well commented file, which

describes each entry as it is defined. These comments are

the best guide for editing the menu.ini file, as they describe

the syntax required for each definition. The order of these

definitions is also very important. The menu first requires the

images and fonts to be defined and then these defined

graphics are used to assemble the menu. Open the menu.ini

file in NotePad and take a quick look at the definitions. It may

seem confusing at first, but it can be broken down into

different sections, that make it easier to understand. Next, is a

breakdown of the required types of definitions and how they

are used by the menu.

3D Games with Reality Factory

180

• Design Size - This is the first and most critical setting. It

defines the resolution of the menu screen graphic

coordinates. This does not effect the screen resolution. It

only defines the size of the coordinate grid, that will be

used to position the graphics that make up the menu. The

default is 800 x 600, to match up with the default 800 x

600 screen resolution set in RealityFactory.ini.

• Background Images - Each image that will be used as a

background must be defined with a number. The menu.ini

file shows the syntax to be, background=background

number background image. The first image defined in the

default menu.ini is, background=1 backimage1.png. This

sets background image number 1, to be backimage1.png

Later, when this image needs to be referenced as a

background, it will be referred to as background number 1.

• Images - These are the images that are used to make up

the buttons, scroll bars, check boxes and sliders. The

syntax defines an image number, the image to be used

and then the alpha map for the image. The components

are then taken from these images, by defining the areas

that contain the components. This is explained more

thoroughly later on.

• Title Images - Each menu screen can have a unique Title

Image displayed along with it. These are defined in the

menu.ini file in the same manner as images, using the

Title Image number, the image and then the alpha map.

• Animations - Instead of static images such as the ones

defined above, the RF menu can use animated GIF

images in their place. It is important to remember, that GIF

images are not placed in the bitmaps folder, but are

instead stored within the RF media\video\menu folder. A

common error, is to store animations in the bitmaps folder.

The RF Menu

181

In the new RF07 default menu, all of the images used for

buttons are animated GIF files.

• Fonts - All fonts used in RF by the HUD or Menu, are

defined in the menu.ini file. Fonts are added to RF, using

the Font Tool that comes with RF. The resulting DAT file is

then defined in the menu.ini file. What is important to

remember, is that font numbers referred to by the HUD or

a level entity, always indicate one less then the defined

number in the ini file. For example, Font 9 in the HUD,

would be referred to as font 8.

• Menu Titles - The title images that are defined earlier in

the file, were only to specify the image to be used. The

actual placement of the image on screen, is defined as a

menutitle. Before continuing with assembling a menu, the

menutitle definition in the default RF menu.ini, can serve

to show the difference between the oldmenu.ini and the

menu.ini files.

Old Menu vs New Menu

Before RF07 the menu that RF used was made up of

static images. As of RF07, the menu was changed to

demonstrate the use of animated GIF images. The first

defined menutitle in the RF07 menu, is an example of a

defined animation used for a title. The rest of the definitions,

are for static images. Below is the first menutitle defined the

the RF menu.ini file.

menutitle=0 0 480 161 0 0 0 0 10

The syntax asks for 9 values to define the title. The

first value, is the number of this menutitle. This is used as a

3D Games with Reality Factory

182

reference, when the menu screens are defined. The second

value, defines the title image to be used. In this case though,

there is no title image number 0. This makes the menu load

the animation instead. The next two values, 480 and 161, are

the X and Y coordinates of the image on the screen. The two

values that follow, are the width and height. They are set to 0,

because the image is using a single animation, instead of a

static image taken from a larger bitmap. The next two values

are used with the width and height parameters, to define the

top / left corner, of the area of the smaller image. The final

value is the animation number to use. In this case, it is

animation number 10.

The next entry does not use an animation, but instead

uses a static image. Below is the second menutitle, defined in

the RF07 menu.ini file.

menutitle=1 1 480 161 152 100 0 0 -1

In this definition, title image number 1 is used as the

source image. It is given the same X and Y coordinates, but

also defines the height (152) and width (100) of the title

image. This is in case the image is made from an area of a

larger image. In this case however, it is not, so the next two

values are 0,0. These are the top / left coordinates of the

area, that the image would be taken from. Once again

however, this definition uses a single image and does not

take a smaller image from a larger one. The best way to

understand this is to take a look at the image used to make

the buttons for the RF old menu. Open the file, Images.bmp in

the media\bitmaps\menu folder. This is an image, that

contains all of the buttons used in the RF menu, previous to

RF07. The old menu, divided up this single image to create

The RF Menu

183

each button. The new menu however, uses a single image for

each button. These are the GIF images, stored in the RF

media\video\menu folder.

Defining Menu Screens

This is where all of the previously defined images, are

now brought together to define each individual menu screen.

The first menu screen, is the Main menu and unlike the

others, it has a unique entry which defines the background

image number and the title menu to be used. This is defined

by the entry, main=0 1. Next comes the individual buttons for

each specific menu. As stated previously, any button that is

not defined does not appear in the menu. This means that the

player will have no way of accessing that menu. A menu can

be kept down to a bare minimum by only defining a few

buttons that allow the game to start, exit and be configured.

The Space Escape demo uses a minimum menu and is

examined later in the chapter.

The syntax for defining a button, is similar to the

syntax for defining a menu title. Below is the definition for the

start game button.

newgame=26 158 0 95 57 0 0 0 0 0 1

The syntax demands the X and Y coordinates of the

image on screen, followed by the image number itself. Since

an animation is used instead of an image, the defined image

is 0, which does not exist. The next values define the width

and height of the image. This is required for the menu to

know the mouse over area. The next settings are all 0,

3D Games with Reality Factory

184

because the image used is an animation and not a static

image, taken from a larger image. All that is then required, is

the final two values, which specify the animation number and

the animation to be used as a mouse over. In this case, it is

animation 0 and 1.

Buttons that lead to another menu require two more

values. They require the background image number and the

menu title to be used for the next screen. Below is the

definition for the button that leads to the Credits menu.

credits=26 400 0 95 57 0 0 0 0 2 1 11 12

Before the two animations are defined, the

background number and the title number for the credits menu

are defined. In this case, it is background image number 1

and menu title 11.

Difficulty and Character Selection

Two more menus outside of the main menu, are

available to players if required. These include the Difficulty

Setting Menu and the Character Selection menu. These

appear after New Game is selected from the Main menu.

They are also defined within the menu.ini file, but will only be

available, if activated using the RF INI Editor. Although these

will not be discussed here, what is important to remember, is

that they can not be removed from the menu.ini file or RF will

crash. They must be defined and not commented out, in an

attempt to save on the distribution of media. The same goes

for the Video Options Menu and the Advanced Control menu.

The RF Menu

185

The Space Escape Menu

The menu used for the Space Escape demo is a

scaled down version of the RF menu, that uses different

images for the menu titles and the backgrounds. None of the

positions are altered and the same menu buttons are used.

The only modification to the menu.ini file, is the commenting

out of the entries which define the Save Game menu, the

Load Game Menu and a few of the options. The following,

shows the changes made to the different sections of the

menu.ini file. The new file is saved as spacemenu.ini and is

then set as the default menu, using the RF INI Editor.

The first changes are to the background images.

Three different background images are set to be used with

this menu and the others are commented out. Notice that the

images used are JPGs and not PNGs for this menu.

;--

; define the background bitmaps

; format : background# bitmap

;--

background=1 spacemain1.jpg

background=2 spaceblank.jpg

background=3 spacecredit.jpg

; background=4 backload.png

etc..

The only changes to the images defined, is to the first

image which is displayed with the Credits menu. By defining

the same image as the alpha map, the image is displayed

with no transparent regions.

3D Games with Reality Factory

186

;--

; define the images bitmaps

; format : image# bitmap alpha_bitmap

;--

images=6 spacecredit.jpg spacecredit.jpg

images=7 bartop.png bartop.png

etc..

No menu titles are displayed in the Space Escape

demo menu screens, so in order to eliminate them, a totally

transparent image is used instead. Each button definition, will

then require the Menu Title value, to be the first Menu Title

defined. In order to save media space, all the other title

images are commented out or deleted.

;--

; define the titles bitmaps

; format : titleimage# bitmap alpha_bitmap

;--

titles=1 blank.bmp a_blank.bmp

; titles=2 optionstitle.jpg optionstitle.jpg

; titles=3 audiotitle.jpg audiotitle.jpg

etc...

All the animations are used as buttons, except for

animation number 10, which is the Main Menu Title. It can be

commented out to save media space. Now changes can be

made to remove the defined Menu Titles and only use the

new transparent menu title, that will not be seen.

;--

; define the menu titles graphics

The RF Menu

187

; format : title# titleimage# screen_X screen_Y width height

image_X image_Y animation#

;--

; menutitle=0 0 480 161 0 0 0 0 10

menutitle=1 1 0 0 32 32 0 0 -1

; menutitle=2 2 480 161 152 100 0 0 -1

; menutitle=3 3 480 161 152 100 0 0 -1

etc..

 The modifications made to the Main Menu definitions,

alter the background image, the menutitle for the options

menu and the credits menu. It also removes the unused

buttons, so in order to keep the buttons together, the Y values

are also changed.

;-------------------

; Main Menu

;-------------------

main=1 1

newgame=26 158 0 95 57 0 0 0 0 0 1

; multiplayer=516 306 0 95 57 0 0 0 0 2 1 45 46

; loadgame=26 220 0 95 57 0 0 0 0 2 1 2 3

; savegame=26 280 0 95 57 0 0 0 0 2 1 4 5

options=26 220 0 95 57 0 0 0 0 2 1 6 7

credits=26 280 0 95 57 0 0 0 0 2 1 11 12

quitmain=26 340 0 95 57 0 0 0 0 8 9

returntext=318 575 FONT9

; mods=516 376 0 95 57 0 0 0 0 2 14 51 52

With the multiplayer, load game and savegame

options commented out, their corresponding sub-menus can

also be removed. This will help to save media space later on

3D Games with Reality Factory

188

when the package is distributed. All that’s required to

complete the new menu is to make a few changes to the

definition for the Options menu and the Controls menu.

;-------------------

; Options Menu

;-------------------

audio=26 158 0 95 57 0 0 0 0 2 1 16 17

; video=26 224 0 95 57 0 0 0 0 2 1 18 19

control=26 224 0 95 57 0 0 0 0 2 1 20 21

; debug=26 352 0 95 57 0 0 0 0 2 11 22 23

quitoptions=26 288 0 95 57 0 0 0 0 13 14

For the Control menu, all that needs to be changed is

the advance setting, which is just commented out.

;-------------------

; Control Menu

;-------------------

; advance=26 158 0 95 57 0 0 0 0 2 6 27 28

Although it seemed a bit of a task, that was about as

minimum a modification, that can be made to the menu. All

that’s needed to use this menu, is to define it as the default

menu, using the RF INI Editor.

Space Escape - Finishing Touches

189

The Space Escape demo is finally ready to have the

finishing touches added and then it can be distributed. Right

now, it is still in the development stage and needs to be made

suitable for a player. This will include adjusting the lighting,

performing a final texture pass, adding a bit of level detail and

then adjusting the player attributes.

Final Lighting

The final release of the Space escape demo does not

have colored lighting and instead uses a RGB value of 255,

255, 255. This allows the colors of the textures, to become

clear in the game. The only light that is kept at RGB 255, 0, 0,

is the Dynamic Light Entity.

 All of the lights can be modified at once, by selecting

one of the light entities and then while holding down shift,

selecting the rest of them one at a time. If a brush or a

different entity is selected, then simply click on it again, in

order to deselect it. Once all of the light entities have been

selected, open the Entity Properties dialog box and then

change the Color property to RGB 255, 255, 255. This will

simultaneously change the Color property for all of the light

entities. This could have easily been performed one at a time

as well, since the level only has a total of 11 lights.

3D Games with Reality Factory

190

Since the level was very small, having less then 100

brushes, the Light Scale for the level was reduced from 2 to

1. This helped to create tighter shadows and a more realistic

lighting effect. From the File menu, select Properties and

change the Light Scale entry to 1.

Adding Level Detail

The esthetic detail added to the Space Escape demo,

is very minor and was left to the final stage of development.

This detail included some boxes in the storage room, a

computer panel in the Control room, some ceiling to floor

cables and a different computer panel in the Air Lock room. In

this case, the only brushes that were flagged as detail, were

the crates in the store room and the cables in the Air Lock

room.

Brushes that do not block the players view entirely,

such as the cables, should be flagged as a Detail brush. This

helps to reduce compiling time and remove the brush from

specific engine processes, that can reduce frame rate.

Brushes are flagged as detail, using the Brush Properties

dialog.

One thing to remember about using detail brushes, is

that they should always be positioned at least 1 texel away

from a brush that is not flagged as detail. Practically, this is

not always possible, but if not done, then the engine may

draw extra polys that can again reduce the frame rate. It can

also cause odd shadow mapping, depending on the light

scale of the level.

Space Escape - Finishing Touches

191

Final Texture Pass

With very large levels, this can become one of the

more tedious parts of the development process. This is

another reason why it is good to start with a set of base

textures when building the level. The final texture pass for the

Space Escape demo, only requires the outer faces of the ship

to be textured with Wall_Base_01 and the scale set to 1.

These are the faces that are seen through the windows of the

Hallway. Use the Camera view port, to select the three faces

which make up one of the visible walls and then apply and

adjust the scale simultaneously.

Player Attributes and Scripts

During the testing process, the players health attribute

was set to a value that would prevent the player from being

killed. It is now time to reduce that value to the regular playing

amount and test the death of the player and the difficulty of

the level. Edit the player.ini and change the health entry to the

following.

[health]

initial=50

low=0

high=50

This sets the initial health for the player to be at 50.

The player can take 10 hits from the robots before being

killed. As for the robots, the script controlling them still has the

setting Console(true) applied. This makes the debugging text,

3D Games with Reality Factory

192

be displayed in the top left corner. Remove this by setting the

command to Console(false). This command, was the first

command in the Spawn order.

Sound Effects

Sound and music, can really make the difference in a

game. Without them, the game just seems like a series of

moving pictures. For the Space Escape demo, things were

kept to a minimum and the only sounds that were added,

were a background song and weapons effects.

Music which is to be played in a level, is specified

within the PlayerStart entity. RF can play a CD track, a MIDI

file or a Wave file during run time. In this case, a Wave file is

specified. Copy the file named spacemusic.wav, into the RF

media\audio folder and change the following properties in the

PlayerStart Entity.

• bSoundtrackLoops - true

• szStreamingAudio - spacemusic.wav

Compile and preview the level. The short wave file will

continuously repeat itself, as soon as the level is loaded and

continue to play until the completion of the level.

Two sound effects, were also added to the Plasma

Rifle and the projectile it fires. Copy the files named

zapper2.wav and raygun.wav, from the media package for the

book, to the RF media\audio folder. First the sound that is

played when the weapon fires is added to the weapon.ini file.

Edit the weapon.ini file and add the following to the

Space Escape - Finishing Touches

193

PlasmaRifle entry.

[PlasmaRifle]

viewanimspeed = 1

viewidleanim = gun2idle

viewattackanim = gun2shoot

viewwalkanim = gun2walk

attacksound = ZAPPER2.WAV

This defines the sound file zapper2.wav to be played

when ever the Plasma Rifle fires. Now, a second sound effect

will be added to create an impact sound. Add the following to

the PlasmaBullet entry.

[PlasmaBullet]

altdamage = 1

explosionradius = 0

explosiondamage = 1

decal = 0

impactsound = RAYGUN.WAV

With this addition, the Plasma Rifle now makes a

sound when ever it is fired and when it impacts an object as

well. Save the weapon.ini file and preview the level. The

sound effects and music, do much to change the atmosphere

of the game.

With these finishing touches added to the level, the

Space escape demo is now complete. It is ready to go on to

the final stage of development for the demo, the packaging

and distribution stage.

3D Games with Reality Factory

194

Packaging a Demo

195

Before the release of RF07, demos made with Reality

Factory, were compiled using an application called Game

Builder. However, very many enhancements were made to

RF, that Game Builder was not capable of recognizing. Game

Builder also had some bugs, that made using it dangerous.

Since the release of RF07, Game Builder has been dis-

continued and was replaced with RF07MIN.zip. This is a copy

of RF, that only contains the necessary media that RF needs

to run. This is used as a base, to build up a demo from the

media used in the custom level. A similar method is outlined

in this chapter, but does not require RF07MIN.

Pack Files

RF can store all media inside a pack file which is

defined in the realityfactory.ini file. The default pack file for RF

is pack.vfs and is located in the RF root folder. Pack files

store everything from the menu media, to the configuration ini

files. The one thing a pack file can not store however, are

scripts. If using a pack file, the scripts folder must be kept

separate.

The contents of a pack file are managed using the RF

VFS Explorer tool. This tool can create new pack files and

edit existing ones. The contents of a pack file, look exactly

3D Games with Reality Factory

196

like the RF directory tree, excluding the scripts folder and the

files within the RF root directory. The only benefit of using a

pack file, is that it can password protect the contents. This

ensures that no one can extract the game media, for use in

another game.

Assembling a Demo

As it was said in the first chapter, RF is a ready made

game, that can be configured to be another game entirely. In

order to prepare a demo, all that is required is to create a

folder with the minimum required RF files, the game demo

configuration files and the media used by the demo. The

following is a step by step example, of how the Space Escape

demo was assembled into a game that would be ready for

packaging.

• Step 1 - A new folder was created named SpaceEscape

Demo. The first files that were copied into this folder were

the files required to run RF. This includes every file in the

root directory except for, temp.bin, changelog.doc and

WireDrv.dll. Copy the rest of the files into the new folder

named SpaceEscapeDemo.

• Step 2 - Then the Scripts folder, the install folder and the

media folder, are all copied to the new

SpaceEscapeDemo folder as well.

• Step 3 - The next step is to configure the ini files to

remove the headings that are not required for the demo. If

these are not removed, then RF will try and load the

media that they define. The following is a list of the ini files

used for Space Escape, and the only headings which

should be defined in each. Any ini files which are not

Packaging a Demo

197

mentioned, were not edited in any way during this

process. With only these headings defined, the required

media has been reduced to only what the Space Escape

Demo uses.

• Effects.ini

⇒ [YellowLight]

⇒ [LargeExplosion]

⇒ [Corona]

⇒ [BotSpray]

⇒ [BlueCorona]

• Explosion.ini

⇒ [GrenadeExplosion]

⇒ [CorExpl]

⇒ [BotExpl]

• Pawn.ini

⇒ [Android]

• Weapons.ini

⇒ [PlasmaBullets]

⇒ [PlasmaRifle]

• Player.ini

⇒ [health]

⇒ [PlasmaBullets]

⇒ [PlasmaRifle]

• Inventory.ini

⇒ No Headings - Blank File

3D Games with Reality Factory

198

• Character.ini

⇒ No Headings - Blank File

• Step 4 - With the configuration files reduced to the bare

minimum, the unused media was then removed from the

copied over media folder. Below is a list of the entire

contents of the media folder used by the Space Escape

Demo. Media that is required by default, even if it is not

used in the demo, is shown with a *. Folders are in bold.

• Actors

⇒ android1.act

⇒ bullet1.act

⇒ Ernie.act

⇒ PlasmaRifle.act

• Audio

⇒ die.wav

⇒ die1.wav

⇒ footstep.wav

⇒ injury.wav

⇒ injury1.wav

⇒ Raygun.wav

⇒ spacemusic.wav

⇒ Zapper2.wav

⇒ Menu

⇒ pop1.wav

⇒ pop2.wav

• Bitmaps

⇒ Conversation - Empty *

⇒ Explode - Large - All Contents

Packaging a Demo

199

⇒ Fonts - All Contents

⇒ Hud

⇒ gun_indicate.bmp

⇒ gun_indicate_alpha.bmp

⇒ gun_shell.bmp

⇒ gun_shell_alpha.bmp

⇒ health_indicate.bmp

⇒ health_indicate_alpha.bmp

⇒ Inventory - Empty *

⇒ Menu - This folder only contains the media which is

defined in the spacemenu.ini file. This includes, the

backgrounds, the title images, the images and the cursor.

⇒ Terrain - Empty *

⇒ a_bubl.bmp *

⇒ a_flame.bmp *

⇒ a_lvsmoke.bmp *

⇒ a_rain.bmp *

⇒ airlock.bmp

⇒ Bolt.bmp *

⇒ Corona.bmp *

⇒ Corona_a.bmp *

⇒ flame03.bmp *

⇒ g_bubble.bmp *

⇒ lvsmoke.bmp *

⇒ rain.bmp *

• Levels

⇒ escape.bsp

• Video - Menu - All Contents

These four steps copy and then reduce the media

3D Games with Reality Factory

200

which goes into the SpaceEscapeDemo folder. What was

required after, was to try and run the demo and see if any

media is missing. If RF does not find a defined media, it will

crash and return an error specifying the name of the missing

file and where it looked for it. If this happens when packaging

a demo, then the missing file is added and then the demo is

executed again. This process is repeated until the demo

successfully runs.

Final Testing

When the demo does not crash and ask for media,

then it is very important to test the game by playing it to the

end and taking it through every possible scenario. This will

reveal any missing media, that is not loaded before the level

starts. This can include sounds that are defined in a pawn

script, effects and level transition splash screens. These

media elements, are only loaded as required and can cause

RF to crash if not found.

Testing can not be stressed enough. Test, test and re-

test the final demo before releasing it. Try every scenario

including the players death sequence and the completion of

the level. Failure to completely test a level before releasing it,

is a very common error found in many game demos.

Especially those released by a very small development team.

Once again, be sure to completely test a level, before

releasing it to the public.

Be sure to also test the game play of the level.

Calculate the amount of ammo required to clear the game

and then decide on the level of inaccuracy that will be allowed

Packaging a Demo

201

for the player to still win. The same goes for the health

attribute. In the case of the Space Escape demo, this is not

necessary, because the weapon always recharges itself, but

the health should be considered as well. How many times will

the player be ale to be shot before dieing, will determine how

easy or difficult the game will be.

Game Identity

When the developer is confident enough that the

game is suitable for distribution, the final steps are to give

identity to the game, by changing the icon and then to

prepare a distribution package from the newly created files.

this will require a couple of third party tools, that are readily

available on-line.

First on the list is a tool that can change the

executable icon of the RealityFactory.exe file. Two such tools

include, Icon Forge and IcoChanger (Not Icon Changer).

These can both permanently change the icon of a Windows

exe file. Before changing the original icon though, there must

be an icon that can replace it. There are many freeware icon

making programs and most are capable of creating a 16

color, 32 x 32 icon file. Any one of these programs can be

used to create a suitable replacement icon. As an alternative,

there are also many freeware programs that can convert a

bmp file into an ico file. Most of these can also be used. One

such example is, QTAM - BMP to ICO.

After changing the icon for the RealityFactory.exe file

in the demo folder, the next step is to change the name of the

file, to the name of the demo. In this case, RealityFactory.exe

3D Games with Reality Factory

202

was renamed, SpaceEscape.exe. Also, in the realityfactory.ini

file, there is an entry named, GameName. Change this to

match the name of the demo. This is displayed in the task bar

box, that becomes visible when RF runs.

Packaging the Demo

With the game demo ready to be distributed, all that is

required is to turn the folder containing the game into a single

file that can install the game on another system. The author

has always used Install Maker Pro to release free game

demos, because it is very simple to use and has minor

restrictions applied to the shareware version. It can easily

create a simple installation file, without any need to write a

setup file. A release for a commercial demo however, should

not use something as simple as Install Maker Pro and instead

should use a program such as Inno Setup. This can let other

files be defined in the Program Start menu, giving the player

access to the Video Setup program and a help file. Also, the

Inno Setup license has no splash screens or usage

restrictions.

When preparing the distribution package, the most

important thing to consider is the graphics mode for the game.

Is it 16 bit or 32 bit? Will this be fixed at the start or will the

player be allowed to select it after? Some computers can not

use the 32 bit system so just to play it safe, it may be best to

distribute any demos in 16 bit mode and then allow the player

to select a 32 bit mode if they desire to.

Advanced Level Design

203

Reality Factory is a very powerful game engine and

the Space Escape demo barely scratches the surface of what

it can do. RF has many features, that allow it to create very

large and sophisticated levels. As of the RF07D update, it

also incorporates variable LOD for actors, environment

mapping and a scriptable SkyDome, to name just a few

features. By understanding how to use these features, a

game can be designed with these features being considered.

This can lead to a very sophisticated game, that can easily

meet up to commercial standards.

Clipping and Fogging

The number one way to increase frame rate and to

best keep it at a steady level, is to use the Clipping and

Fogging feature that is defined in the EnvironmentSetup

Entity. This system makes use of two elements that when

combined, limits the rendering of objects and geometry in the

level, to a small area that surrounds the player.

On the next page is a diagram which describes the

relationship between the properties defined in the

EnvironmentSetup Entity. The Fog settings should always be

less then the Clip settings, so as to give the illusion that level

geometry is faded into view. What’s really going on however,

3D Games with Reality Factory

204

Fogging and Clipping

The outer square

represents the Far Clip

Plane and the circle is to

represent the point at which

the fog becomes solid. The

fog should become solid

just before the edge of the

Clip Plane. This gives the

appearance that objects are

slowly fading into view.

is that behind the Fog, no geometry or objects are being

rendered. Below is a breakdown of the settings in the

EnvironmentSetup Entity, that control the fogging and clipping

of a level.

• FarClipPlaneDistHigh and FarClipPlaneDistLow - These

define the distance from the player, where level Clipping

begins. All level geometry will not be rendered past this

point. It should be at greater then the values used for the

fogging distances.

• FogStartDistHigh and FogStartDistLow - This is the

distance from the player where the fog has a transparency

value of 0 or in other words, does not fog anything. It is

the point where the fog starts.

• TotalFogDistHigh and TotalFogDistLow - These values

define the point at which the Fog becomes solid and can

not be seen through. The difference between the

FogStartDistHigh and the TotalFogDistLow, is the

Advanced Level Design

205

distance that the Fog gradually goes from invisible to

solid.

• EnableDistanceFog and UseFarClipPlane - These must

be set to true, in order to use the Fog and Far Clipping

Plane.

• LODdistance5 - If the level was made using version

RF07D, then this value will define the distance, that an

actor will not be rendered by the engine. This distance

should equal the FarClipPlaneHigh property.

The Clip Plane can also be used with the SkyDome

entity, by setting the width of the SkyDome to be less then the

width of the Clip Plane. To make this work however, the

SkyDome must be told to move with the player at all times.

The SkyDome Script commands, that control the radius of the

SkyDome and the player following are, SetLandscapeSize()

and ToggleMoveWithCamera(), respectively.

Player Scale

Very large levels are created by using a very small

actor scale. Actor scale is defined in the PlayerSetup Entity,

with the properties, ActorScale and PlayerScale. An actor

scaled down to 0.5, will effectively create the illusion that the

level has doubled in size. The same level using a player scale

of 0.1, will seem 10 times larger. This has many benefits,

including the use of smaller brushes to make the world, which

translates into smaller textures. These can be scaled down, to

achieve a crisp appearance. However, when a player is

scaled down, other actors will need to be scaled down as

well. This includes the Scale settings in the weapon.ini file for

each weapon, the pawns and the level actors, such as

3D Games with Reality Factory

206

StaticEntityProxies and Attributes. These must all be reduced,

in proportion to the player scale. Also, two properties of the

Environment Setup entity must also be adjusted. This include

the JumpSpeed and the Speed settings. These will both need

to be significantly reduced, if using a very small actor sale.

Beyond 4000 Texels

The Genesis Engine has trouble rendering past a

distance of 4000 texels, but there are many ways to get

around this. Many designers begin with a large hollow cube to

surround a level, this makes sense with smaller levels, but

can prove to be a problem when designing very large levels.

This means that when designing a large level, the most

efficient means of doing so is to make it from connected

areas, that are no larger then the 4000 texel limit. The

important thing to consider when building a level in this

manner however, is that there can be absolutely no spaces

between outer brushes whatsoever. Any non-connected

brushes, will cause a level leak and prevent the level from

compiling. Levels like this, are best built by creating the outer

brushes using a Snap setting of 8 texels, with brushes that

are sized to be a multiple of 8.

Using MAP Terrains

A popular program that can be used to create a MAP

file of a terrain, goes by the name Nems 3D Terrain Maker.

These MAP files, can then be imported into the World Editor

as level geometry. When exporting a terrain from Nems, that

is intended to be used in RF, it is important to not export the

Hint Brushes as well. The terrain is then imported using the

Advanced Level Design

207

Import option, under the File menu of World Editor. Maps are

sometimes used to fill an entire level, but it may be more

efficient to use smaller hills placed onto a flat brush. This is

more commonly seen in commercial games and is a much

easier way to mix terrains with flat planes.

Terrains can also sometimes slow things down, due to

the large number of brushes that they are created with. A

means of helping out the frame rate loss, is to flag all of the

faces of the terrain and connecting flat brushes, to be

Gourard shaded or Flat. This will not dynamically shade the

faces of the terrain, greatly helping to restore frame rate

losses.

Using Teleporters

Another means of creating very large levels, is to

section them off into separate areas and connect them using

the Teleporter and TeleportTarget Entities. These two entities

work together to allow an instant repositioning of the player

from the point defined by the Teleporter, to the Teleport-

Target Entity.

Teleporter entities, require a model that will be the

contact point for the teleportation to occur. To create a

seamless transition, the model which activates the player

teleportation sequence, should be an invisible brush, that is

placed in the middle of a narrow passage. The same narrow

passage, is duplicated as the entrance to another section of

the level. This is where the TeleportTarget Entity is placed. By

adding a second transparent brush before the TeleportTarget

Entity, the passage can be used as a two way system.

3D Games with Reality Factory

208

Another practical use for the Teleporter Entity, is to

create a level that mixes indoor areas with outdoor areas. For

example, a level that is meant to start outdoors, but allows the

player to enter into buildings. An efficient means of

developing this, is to have the outdoor buildings made of solid

geometry, which is separate from the indoor areas. The

player is teleported to the indoor areas, when they come into

contact with a door of a building. An example of this is

demonstrated in the RF demo, The Ransom. When the player

is lead to the Kidnapper, they are teleported to an area that

has the inside of the apartment containing the hostage. The

area has a portion of the surrounding outdoor area recreated,

in order to allow interaction between the inside of the building

and the outside streets.

ISBN 0 - 968715 - 4 - X

Bookshock Publications
www.bookshock.com

3D Games Without Programming

